Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Distribution of r-Patterns in the Most Significant Bit of a Maximum Length Sequence over \({\mathbb Z}_{2^l}\)

  • Conference paper
Sequences and Their Applications - SETA 2004 (SETA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3486))

Included in the following conference series:

Abstract

The number of subwords of length r and of given value within a period of a sequence in the title is shown to be close to equidistribution. Important tools in the proof are a higher order correlation and Galois ring character sum estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dai, Z.-D.: Binary sequences derived from ML-sequences over rings I: period and minimal polynomial. J. Cryptology 5, 193–507 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dai, Z.-D., Dingfeng, Y., Ping, W., Genxi, F.: Distribution of r −patterns in the highest level of p −adic sequences over Galois Rings. In: Golomb Symposium USC 2002 (2002)

    Google Scholar 

  3. Davenport, H.: Multiplicative Number Theory, GTM 74. Springer, Heidelberg (2000)

    Google Scholar 

  4. Fan, S., Han, W.: Random properties of the highest level sequences of primitive Sequences over \({\mathbb Z}_{2^e}\). IEEE Trans. Inform. Theory IT-49, 1553–1557 (2003)

    MathSciNet  Google Scholar 

  5. Helleseth, T., Kumar, P.V.: Sequences with low Correlation. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, vol. II, pp. 1765–1853. North Holland, Amsterdam (1998)

    Google Scholar 

  6. Kumar, P.V., Helleseth, T.: An expansion of the coordinates of the trace function over Galois rings. AAECC 8, 353–361 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kumar, P.V., Helleseth, T., Calderbank, A.R.: An upper bound for Weil exponential sums over Galois rings and applications. IEEE Trans. Inform. Theory IT-41, 456–468 (1995)

    Article  MathSciNet  Google Scholar 

  8. Lahtonen, J.: On the odd and the aperiodic correlation properties of the binary Kasami sequences. IEEE Trans. Inform. Theory IT-41, 1506–1508 (1995)

    Article  MathSciNet  Google Scholar 

  9. Lahtonen, J., Ling, S., Solé, P., Zinoviev, D.: \({\mathbb Z}_8\)-Kerdock codes and pseudo-random binary sequences. Journal of Complexity 20(2-3), 318–330 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Solé, P., Zinoviev, D.: The most significant bit of maximum length sequences over \({\mathbb Z}_{2^l}\) autocorrection and imbalance. IEEE IT (2004) (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Solé, P., Zinoviev, D. (2005). Distribution of r-Patterns in the Most Significant Bit of a Maximum Length Sequence over \({\mathbb Z}_{2^l}\) . In: Helleseth, T., Sarwate, D., Song, HY., Yang, K. (eds) Sequences and Their Applications - SETA 2004. SETA 2004. Lecture Notes in Computer Science, vol 3486. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11423461_20

Download citation

  • DOI: https://doi.org/10.1007/11423461_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26084-4

  • Online ISBN: 978-3-540-32048-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics