Abstract
The number of subwords of length r and of given value within a period of a sequence in the title is shown to be close to equidistribution. Important tools in the proof are a higher order correlation and Galois ring character sum estimates.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dai, Z.-D.: Binary sequences derived from ML-sequences over rings I: period and minimal polynomial. J. Cryptology 5, 193–507 (1992)
Dai, Z.-D., Dingfeng, Y., Ping, W., Genxi, F.: Distribution of r −patterns in the highest level of p −adic sequences over Galois Rings. In: Golomb Symposium USC 2002 (2002)
Davenport, H.: Multiplicative Number Theory, GTM 74. Springer, Heidelberg (2000)
Fan, S., Han, W.: Random properties of the highest level sequences of primitive Sequences over \({\mathbb Z}_{2^e}\). IEEE Trans. Inform. Theory IT-49, 1553–1557 (2003)
Helleseth, T., Kumar, P.V.: Sequences with low Correlation. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, vol. II, pp. 1765–1853. North Holland, Amsterdam (1998)
Kumar, P.V., Helleseth, T.: An expansion of the coordinates of the trace function over Galois rings. AAECC 8, 353–361 (1997)
Kumar, P.V., Helleseth, T., Calderbank, A.R.: An upper bound for Weil exponential sums over Galois rings and applications. IEEE Trans. Inform. Theory IT-41, 456–468 (1995)
Lahtonen, J.: On the odd and the aperiodic correlation properties of the binary Kasami sequences. IEEE Trans. Inform. Theory IT-41, 1506–1508 (1995)
Lahtonen, J., Ling, S., Solé, P., Zinoviev, D.: \({\mathbb Z}_8\)-Kerdock codes and pseudo-random binary sequences. Journal of Complexity 20(2-3), 318–330 (2004)
Solé, P., Zinoviev, D.: The most significant bit of maximum length sequences over \({\mathbb Z}_{2^l}\) autocorrection and imbalance. IEEE IT (2004) (in press)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Solé, P., Zinoviev, D. (2005). Distribution of r-Patterns in the Most Significant Bit of a Maximum Length Sequence over \({\mathbb Z}_{2^l}\) . In: Helleseth, T., Sarwate, D., Song, HY., Yang, K. (eds) Sequences and Their Applications - SETA 2004. SETA 2004. Lecture Notes in Computer Science, vol 3486. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11423461_20
Download citation
DOI: https://doi.org/10.1007/11423461_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26084-4
Online ISBN: 978-3-540-32048-7
eBook Packages: Computer ScienceComputer Science (R0)