Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

DRC-BK: Mining Classification Rules by Using Boolean Kernels

  • Conference paper
Computational Science and Its Applications – ICCSA 2005 (ICCSA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3480))

Included in the following conference series:

Abstract

An understandable classification models is very useful to human experts. Currently, SVM classifiers have good classification performance; however, their classification model is non-understandable. In this paper, we build DRC-BK, a decision rule classifier, which is based on structural risk minimization theory. Experiment results on UCI dataset and Reuters21578 dataset show that DRC-BK has excellent classification performance and excellent scalability, and that when applied with MPDNF kernel, DRC-BK performances the best.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yang, Z., Zhanhuai, L., Muning, K., Jianfeng, Y.: Improving the Classification Performance of Boolean Kernels by Applying Occam’s Razor. In: The 2nd International Conference on Computational Intelligence, Robotics and Autonomous Systems, CIRAS 2003 (2003)

    Google Scholar 

  2. Sadohara, K.: Learning of Boolean functions using support vector machines. In: Abe, N., Khardon, R., Zeugmann, T. (eds.) ALT 2001. LNCS (LNAI), vol. 2225, pp. 106–118. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Sadohara, K.: On a capacity control using Boolean kernels for the learning of Boolean functions. In: Proceedings of 2002 IEEE International Conference on Data Mining, pp. 410–417. IEEE Computer Society, Los Alamitos (2002)

    Chapter  Google Scholar 

  4. Khardon, R., Roth, D., Servedio, R.: Efficiency versus convergence of Boolean kernels for on-line learning algorithms. Technical Report UIUCDCS-R-2001-2233, Department of Computer Science, University of Illinois at Urbana-Champaign (2001)

    Google Scholar 

  5. Yang, Z., Zhanhuai, L., Yan, T., Kebin, C.: DRC-BK: Mining Classification Rules with Help of SVM. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 191–195. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Liu, B., Hsu, W., Ma, Y.: Intergrating Classification and Association Rule Mining. In: Proc. KDD (1998)

    Google Scholar 

  7. Li, W., Han, J., Pei, J.: CMAR: Accurate and Efficient Classification Based on Multiple Class-association Rules. In: Proc. the 2001 IEEE International Conference on Data Mining, ICDM 2001 (2001)

    Google Scholar 

  8. Li, J., Dong, G., Ramamohanarao, K.: Instance-based classification by emerging patterns. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 191–200. Springer, Heidelberg (2000)

    Google Scholar 

  9. Meretakis, D., Wuthrich, B.: Extending Naïve Bayes Classifiers Using Long Itemsets. In: Proceedings of the Fifth ACM SIGKDD, San Diego, pp. 165–174 (1999)

    Google Scholar 

  10. Dong, G., Zhang, X., Wong, L., Li, J.: CAEP: Classification by aggregating emerging patterns. In: Arikawa, S., Furukawa, K. (eds.) DS 1999. LNCS (LNAI), vol. 1721, p. 30. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Y., Li, Z., Cui, K. (2005). DRC-BK: Mining Classification Rules by Using Boolean Kernels. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2005. ICCSA 2005. Lecture Notes in Computer Science, vol 3480. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424758_23

Download citation

  • DOI: https://doi.org/10.1007/11424758_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25860-5

  • Online ISBN: 978-3-540-32043-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics