Abstract
An understandable classification models is very useful to human experts. Currently, SVM classifiers have good classification performance; however, their classification model is non-understandable. In this paper, we build DRC-BK, a decision rule classifier, which is based on structural risk minimization theory. Experiment results on UCI dataset and Reuters21578 dataset show that DRC-BK has excellent classification performance and excellent scalability, and that when applied with MPDNF kernel, DRC-BK performances the best.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Yang, Z., Zhanhuai, L., Muning, K., Jianfeng, Y.: Improving the Classification Performance of Boolean Kernels by Applying Occam’s Razor. In: The 2nd International Conference on Computational Intelligence, Robotics and Autonomous Systems, CIRAS 2003 (2003)
Sadohara, K.: Learning of Boolean functions using support vector machines. In: Abe, N., Khardon, R., Zeugmann, T. (eds.) ALT 2001. LNCS (LNAI), vol. 2225, pp. 106–118. Springer, Heidelberg (2001)
Sadohara, K.: On a capacity control using Boolean kernels for the learning of Boolean functions. In: Proceedings of 2002 IEEE International Conference on Data Mining, pp. 410–417. IEEE Computer Society, Los Alamitos (2002)
Khardon, R., Roth, D., Servedio, R.: Efficiency versus convergence of Boolean kernels for on-line learning algorithms. Technical Report UIUCDCS-R-2001-2233, Department of Computer Science, University of Illinois at Urbana-Champaign (2001)
Yang, Z., Zhanhuai, L., Yan, T., Kebin, C.: DRC-BK: Mining Classification Rules with Help of SVM. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 191–195. Springer, Heidelberg (2004)
Liu, B., Hsu, W., Ma, Y.: Intergrating Classification and Association Rule Mining. In: Proc. KDD (1998)
Li, W., Han, J., Pei, J.: CMAR: Accurate and Efficient Classification Based on Multiple Class-association Rules. In: Proc. the 2001 IEEE International Conference on Data Mining, ICDM 2001 (2001)
Li, J., Dong, G., Ramamohanarao, K.: Instance-based classification by emerging patterns. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 191–200. Springer, Heidelberg (2000)
Meretakis, D., Wuthrich, B.: Extending Naïve Bayes Classifiers Using Long Itemsets. In: Proceedings of the Fifth ACM SIGKDD, San Diego, pp. 165–174 (1999)
Dong, G., Zhang, X., Wong, L., Li, J.: CAEP: Classification by aggregating emerging patterns. In: Arikawa, S., Furukawa, K. (eds.) DS 1999. LNCS (LNAI), vol. 1721, p. 30. Springer, Heidelberg (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, Y., Li, Z., Cui, K. (2005). DRC-BK: Mining Classification Rules by Using Boolean Kernels. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2005. ICCSA 2005. Lecture Notes in Computer Science, vol 3480. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424758_23
Download citation
DOI: https://doi.org/10.1007/11424758_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25860-5
Online ISBN: 978-3-540-32043-2
eBook Packages: Computer ScienceComputer Science (R0)