Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Queueing Model for Multi-product Production System Under Varying Manufacturing Environment

  • Conference paper
Computational Science and Its Applications – ICCSA 2005 (ICCSA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3483))

Included in the following conference series:

  • 1667 Accesses

Abstract

In this paper, we propose a queueing model for a multi-product production system in which the manufacturing environments are changing over time between some predetermined states. We model this system by the discrete-time Markovian Arrival Stream (MAS) and derive the mean level of WIP (work-in-process) inventory. A numerical example is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asmussen, S., Koole, G.: Marked point processes as limits of Markovian arrival streams. J. Appl. Prob. 30, 365–372 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. He, Q.M.: Queues with marked customer. Adv. Appl. Prob. 28, 567–587 (1996)

    Article  MATH  Google Scholar 

  3. He, Q.M., Alfa, A.S.: The MMAP[K]/PH[K]/1 queues with a last-come -firstserved preemptive service discipline. Queueing Systems 29, 269–291 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. He, Q.M., Neuts, M.F.: Markov chains with marked transitions. Stochastic Process. Appl. 74, 37–52 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Lucantoni, D.M., Meier-Hellstern, K.S., Neuts, M.F.: A single server queue with server vacations and a class of non-renewal arrival processes. Adv. Appl. Prob. 22, 676–709 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Masuyama, H., Takine, T.: Analysis of an infinite-server queue with batch Markovian arrival streams. Queueing Systems 42(3), 269–296 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Masuyama, H., Takine, T.: Analysis and Computation of the Joint Queue Length Distribution in a FIFO Single-Server Queue with Multiple Batch Markovian Arrival Streams. Stochastic Models 19(3), 349–381 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Masuyama, H., Takine, T.: Stationary Queue Length in a FIFO Single-Server Queue with Service Interruptions and Multiple Batch Markovian Arrival Streams. Journal of the Operations Research Society of Japan 46(3), 319–341 (2003)

    MATH  MathSciNet  Google Scholar 

  9. Noh, S.H., Choi, B.D.: Discrete time queues with Markovian arrival streams and state-dependent service times. IEICE Trans. Commun. E86-B(6), 1884–1892 (2003)

    Google Scholar 

  10. Takagi, H.: Queueing Analysis: Discrete-Time Systems, vol. 3. North-Holland, Amsterdam (1993)

    Google Scholar 

  11. Takine, T.: A recent progress in algorithmic analysis of FIFO queues with Markovian arrival streams. J. Korean Math. Soc. 38(4), 807–842 (2001)

    MATH  MathSciNet  Google Scholar 

  12. Takine, T.: Queue length distribution in a FIFO single-server queue with multiple arrival streams having different service distributions. Queueing Systems 39, 349–375 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Takine, T.: Distribution form of Little’s law for FIFO queues with multiple arrival streams and its application to queue with vacations. Queueing Systems 37, 31–63 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Takine, T.: Subexponential asymptotics of the waiting time distribution in a singleserver queue with multiple Markovian arrival streams. Stochastic Models 17(4), 429–448 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Takine, T.: Matrix product-form solution for an LCFS-PR single-server queue with multiple arrival streams governed by a Markov chain. Queueing Systems 42(2), 131–151 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Takine, T., Hasegawa, T.: The workload in the MAP/G/1 queue with statedependent services: its application to a queue with preemptive resume priority. Stochastic Models 10(1), 183–204 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, H.W., Kim, T.H. (2005). A Queueing Model for Multi-product Production System Under Varying Manufacturing Environment. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2005. ICCSA 2005. Lecture Notes in Computer Science, vol 3483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424925_54

Download citation

  • DOI: https://doi.org/10.1007/11424925_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25863-6

  • Online ISBN: 978-3-540-32309-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics