Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Proximal Solution for a Class of Extended Minimax Location Problem

  • Conference paper
Computational Science and Its Applications – ICCSA 2005 (ICCSA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3483))

Included in the following conference series:

  • 1335 Accesses

Abstract

We propose a proximal approach for solving a wide class of minimax location problems which in particular contains the round trip location problem. We show that a suitable reformulation of the problem allows to construct a Fenchel duality scheme the primal-dual optimality conditions of which can be solved by a proximal algorithm. This approach permits to solve problems for which distances are measured by mixed norms or gauges and to handle a large variety of convex constraints. Several numerical results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chan, A.W., Hearn, D.W.: A rectilinear distance round-trip location problem. Transportation Science 11, 107–123 (1977)

    Article  Google Scholar 

  2. Drezner, Z.: The weighted minimax location problem with set-up costs and extensions. Recherche Opérationnelle/Operations Research 25, 55–64 (1991)

    MATH  MathSciNet  Google Scholar 

  3. Frenk, J.B.G., Gromicho, J., Zhang, S.: General models in min-max continuous location: theory and solution techniques. Journal of Optimization Theory and Applications 89, 39–63 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ichimori, T., Nishida, T.: Note on a rectilinear distance round-trip location problem. Transportation Science 19, 84–91 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Idrissi, H., Lefebvre, O., Michelot, C.: A primal-dual algorithm for a constrained Fermat-Weber problem involving mixed gauges. RAIRO Operations Research 22, 313–330 (1988)

    MATH  MathSciNet  Google Scholar 

  6. Mifflin, R.: A stable method for solving certain constrained least squares problems. Mathematical Programming 16, 141–158 (1974)

    Article  MathSciNet  Google Scholar 

  7. Plastria, F.: Continuous location problems. In: Drezner, Z. (ed.) Facility Location: A Survey of Applications and Methods, pp. 225–262. Springer, New York (1995a)

    Google Scholar 

  8. Plastria, F.: Fully geometric solutions to some planar minimax location problems. Studies in Locational Analysis 7, 171–183 (1995b)

    Google Scholar 

  9. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  10. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization 14, 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  11. Spingarn, J.E.: Partial inverse of a monotone operator. Applied Mathematics and Optimization 10, 247–265 (1983)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cornejo, O., Michelot, C. (2005). A Proximal Solution for a Class of Extended Minimax Location Problem. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2005. ICCSA 2005. Lecture Notes in Computer Science, vol 3483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424925_75

Download citation

  • DOI: https://doi.org/10.1007/11424925_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25863-6

  • Online ISBN: 978-3-540-32309-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics