Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Unsupervised Color Image Segmentation Using Mean Shift and Deterministic Annealing EM

  • Conference paper
Computational Science and Its Applications – ICCSA 2005 (ICCSA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3483))

Included in the following conference series:

Abstract

We present an unsupervised segmentation algorithm combining the mean shift procedure and deterministic annealing expectation maximization (DAEM) called MS-DAEM algorithm. We use the mean shift procedure to determine the number of components in a mixture model and to detect their modes of each mixture component. Next, we have adopted the Gaussian mixture model (GMM) to represent the probability distribution of color feature vectors. A DAEM formula is used to estimate the parameters of the GMM which represents the multi-colored objects statistically. The experimental results show that the mean shift part of the proposed MS-DAEM algorithm is efficient to determine the number of components and initial modes of each component in mixture models. And also it shows that the DAEM part provides a global optimal solution for the parameter estimation in a mixture model and the natural color images are segmented efficiently by using the GMM with components estimated by MS-DAEM algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. McLachlan, G.J., Nguyen, S.K., Galloway, G.J., Wang, D.: Clustering of Magnetic Resonance Images. Technical Report, Department of Mathematics, University of Queensland (1998)

    Google Scholar 

  2. Permuter, H., Francos, J., Jermyn, I.H.: Gaussian mixture models of texture and colour for image database retrieval. In: Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing (2003)

    Google Scholar 

  3. Delignon, Y., Marzouki, A., Pieczynski, W.: Estimation of Generalized Mixtures and Its application in Image Segmentation. IEEE Transactions on Image Processing 6(10), 1364–1375 (1997)

    Article  Google Scholar 

  4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. Journal of Royal Statistical Society B 39, 1–39 (1977)

    MATH  MathSciNet  Google Scholar 

  5. Hofmann, T., Buhman, J.M.: Pairwise data clustering by deterministic annealing. IEEE Transactions on PAMI 19(1), 1–13 (1998)

    Google Scholar 

  6. Ueda, N., Nakano, R.: Deterministic annealing EM algorithm. Neural Networks 11, 271–282 (1998)

    Article  Google Scholar 

  7. Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Transactions on PAMI 24(5), 1–17 (2002)

    Google Scholar 

  8. Cheng, Y.: Mean Shift, Mode Seeking, And Clustering. IEEE Transactions on PAMI 17(8), 790–799 (1995)

    Google Scholar 

  9. Kam, A.H., Fitzgerald, W.J.: Unsupervised Multiscale Image Segmentation. In: Proc. 3rd International Conference on Computer Vision, Pattern Recognition and Image Processing (CVPRIP 2000), Atlantic City, New Jersey, USA, vol. I, pp. 54–57 (2000)

    Google Scholar 

  10. Wang, H., Suter, D.: A Novel Robust Method for Large Numbers of Gross Errors. In: Seventh International Conference on Control, Automation, Robotics And Vision, pp. 326–331 (2002)

    Google Scholar 

  11. Park, J., Cho, W., Park, S.: Color Image Segmentation Using a Gaussian Mixture Model and a Mean field Annealing EM. IEICE Transactions on Information and Systems E86-D(10), 2240–2248 (2003)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cho, W., Park, J., Lee, M., Park, S. (2005). Unsupervised Color Image Segmentation Using Mean Shift and Deterministic Annealing EM. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2005. ICCSA 2005. Lecture Notes in Computer Science, vol 3483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424925_91

Download citation

  • DOI: https://doi.org/10.1007/11424925_91

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25863-6

  • Online ISBN: 978-3-540-32309-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics