Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Gabor Features-Based Classification Using SVM for Face Recognition

  • Conference paper
Advances in Neural Networks – ISNN 2005 (ISNN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3497))

Included in the following conference series:

Abstract

In this paper we present a novel Gabor-SVM method for face recognition by integrating the Gabor wavelet representation of face images and SVM classifier. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality and orientation selectivity to deal with the variations due to illumination and facial expression changes. The principal components analysis (PCA) method is then used to reduce the dimensionality of the extracted Gabor features. With the reduced Gabor features, SVM is trained and then employed to do the recognition tasks. The performance of Gabor-SVM method is compared with the standard PCA-NC (Eigenfaces) method and PCA-SVM method on a subset of AR face database. The experiment results demonstrate the efficiency and superiority of the proposed Gabor-SVM method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.J.: Face Recognition: A Literature Survey. ACM Computing Survey 35, 399–458 (2003)

    Article  Google Scholar 

  2. Daugman, J.G.: Uncertainty Relation for Resolution in Space, Spatial Frequency, and Orientation Optimized by Two-dimensional Visual Cortical Filters. Journal of the Optical Society of America A 2, 1160–1169 (1985)

    Article  Google Scholar 

  3. Lee, T.S.: Image Representation Using 2D Gabor Wavelets. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 959–971 (1996)

    Article  Google Scholar 

  4. Lades, M., Vorbruggen, J.C., Buhmann, J., Lange, J., Malsburg, C.V.D., Wurtz, R.P., Konen, W.: Distortion Invariant Object Recognition in the Dynamic Link Architecture. IEEE Transactions on Computers 42, 300–310 (1993)

    Article  Google Scholar 

  5. Wiskott, L., Fellous, J.M., Kruger, N., Malsburg, C.V.D.: Face Recognition by Elastic Bunch Graph Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 775–779 (1997)

    Article  Google Scholar 

  6. Liu, C.J.: Gabor-based Kernel PCA with Fractional Power Polynomial Models for Face Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 572–581 (2004)

    Article  Google Scholar 

  7. Donato, G., Bartlett, M.S., Hager, J.C., Ekman, P., Sejnowski, T.J.: Classifying Facial Actions. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 974–989 (1999)

    Article  Google Scholar 

  8. Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, New York (1998)

    MATH  Google Scholar 

  9. Phillips, P.J.: Support Vector Machines Applied to Face Recognition. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 11, pp. 803–809. MIT Press, Cambridge (1999)

    Google Scholar 

  10. Guo, G.D., Li, S.Z., Chan, K.L.: Support Vector Machines for Face Recognition. Image and Vision Computing 19, 631–638 (2001)

    Article  Google Scholar 

  11. Deniz, O., Castrillon, M., Hernandez, M.: Face Recognition Using Independent Component Analysis and Support Vector Machines. Pattern Recognition Letters 24, 2153–2157 (2003)

    Article  Google Scholar 

  12. Martinez, A.M., Benavente, R.: The AR Face Database. Technical Report 24, CVC (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liang, Y., Gong, W., Pan, Y., Li, W., Hu, Z. (2005). Gabor Features-Based Classification Using SVM for Face Recognition. In: Wang, J., Liao, XF., Yi, Z. (eds) Advances in Neural Networks – ISNN 2005. ISNN 2005. Lecture Notes in Computer Science, vol 3497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11427445_20

Download citation

  • DOI: https://doi.org/10.1007/11427445_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25913-8

  • Online ISBN: 978-3-540-32067-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics