Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Joint Diagonalization of Power Spectral Density Matrices for Blind Source Separation of Convolutive Mixtures

  • Conference paper
Advances in Neural Networks – ISNN 2005 (ISNN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3497))

Included in the following conference series:

  • 1102 Accesses

Abstract

A new approach for the blind separation of convolutive mixtures is proposed based on sources nonstationarity and the joint diagonalization of the output power spectral density matrices. It utilizes a time-domain separation network, but the coefficients are optimized based on a frequency domain objective function. The proposed algorithm has the advantages associated with frequency domain BSS algorithms for long mixing channels, but does not suffer from permutation ambiguity problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yellin, D., Weinstein, E.: Criteria for Multichannel Signal Separation. IEEE Trans. on SP 42, 2156–2168 (1994)

    Article  Google Scholar 

  2. Smaragdis, P.: Blind Separation of Convolved Mixtures in the Frequency Domain. Neurocomputing 22, 21–34 (1998)

    Article  MATH  Google Scholar 

  3. Parra, L., Spence, C.: Convolutive Blind Separation of Non-stationary Sources. IEEE Trans. on Speech and Audio Processing 8, 320–327 (2000)

    Article  Google Scholar 

  4. Araki, S., Makino, S., Nishikawa, T., Saruwatari, H.: Fundamental Limitation of Frequency Domain Blind Source Separation for Convolutive Mixture of Speech. IEEE Trans. on Speech and Audio Process. 11, 109–116 (2003)

    Article  Google Scholar 

  5. Mitianoudis, N., Davies, M.E.: Audio Source Separation of Convolutive Mixtures. IEEE Trans. on Speech and Audio Processing 11, 489–497 (2003)

    Article  Google Scholar 

  6. Ciaramella, A., Tagliaferri, R.: Amplitude and Permutation Indeterminacies in Frequency Domain Convolved ICA. In: Proc. of the International Joint Conference on Neural Networks, vol. 1, pp. 708–713 (2003)

    Google Scholar 

  7. Rahbar, K., Reilly, J.: Blind Source Separation of Convolved Sources by Joint Approximate Diagonalization of Cross-spectral Density Matrices. In: Proc. of ICASSP 2001, vol. 5, pp. 2745–2748 (2001)

    Google Scholar 

  8. Pham, D.-T., Serviére, C., Boumaraf, H.: Blind Separation of Convolutive Audio Mixtures Using Nonstationarity. In: Proc. of ICA 2003, pp. 981–986 (2003)

    Google Scholar 

  9. Amari, S.: Natural Gradient Works Efficiently in Learning. Neural Computation 10, 251–276 (1998)

    Article  Google Scholar 

  10. Sabala, I., Cichocki, A., Amari, S.: Relationships Between Instantaneous Blind Source Separation and Multichannel Blind Deconvolution. In: Proc. IEEE Conference on Neural Networks, vol. 1, pp. 39–44 (1998)

    Google Scholar 

  11. Kawamoto, M., Inouye, Y.: Blind Deconvolution of MIMO-FIR Systems with Colored Inputs Using Second-order Statistics. IEICE Trans. Fundationals E86-A, 597–604 (2003)

    Google Scholar 

  12. See, http://www2.ele.tue.nl/ica99/realworld.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mei, T., Xi, J., Yin, F., Chicharo, J.F. (2005). Joint Diagonalization of Power Spectral Density Matrices for Blind Source Separation of Convolutive Mixtures. In: Wang, J., Liao, XF., Yi, Z. (eds) Advances in Neural Networks – ISNN 2005. ISNN 2005. Lecture Notes in Computer Science, vol 3497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11427445_85

Download citation

  • DOI: https://doi.org/10.1007/11427445_85

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25913-8

  • Online ISBN: 978-3-540-32067-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics