Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Spiculated Lesion Detection in Digital Mammogram Based on Artificial Neural Network Ensemble

  • Conference paper
Advances in Neural Networks – ISNN 2005 (ISNN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3498))

Included in the following conference series:

Abstract

Among breast abnormalities, spiculated lesions are one of the most difficult type of tumor to detect. In this paper, we apply a feature extraction method to generate four feature images for a single mammogram, and then partition every feature image into a series of small square blocks. The four average feature values of each block are considered as an instance describing the block. Finally we use an artificial neural network ensemble method to detect the spiculated lesions. Experiments show that the accuracy of this method is well on digital mammograms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. American Cancer Society: Cancer Facts And Figures 2003: Technical Report, American Cancer Society, Atlanta, GA (2003)

    Google Scholar 

  2. Christoyianni, I., Koutras, A., Dermatas, E., Kokkinakis, G.: Computer Aided Diagnosis of Breast Cancer in Digitized Mammograms. Computerized Medical Imaging and Graphics 26, 309–319 (2002)

    Article  Google Scholar 

  3. Kophans, D.B.: Breast Imaging, 2nd edn. Lippincott Williams (1998)

    Google Scholar 

  4. Liu, S., Babbs, C.F., Delp, E.J.: Multiresolution Detection of Spiculated Lesions in Digital Mammograms. IEEE Transactions on Image Processing 10, 874–884 (2001)

    Article  MATH  Google Scholar 

  5. Hornik, K.M., Stinchcombe, M., White, H.: Multilayer Feedforward Networks Are Universal Approximators. Neural Networks 2, 359–366 (1989)

    Article  Google Scholar 

  6. Sollich, P., Krogh, A.: Learning with Ensembles: How Over-Fitting Can Be Useful. In: Touretzky, D., Mozer, M., Hasselmo, M. (eds.) Advances in Neural Information Processing Systems 8, pp. 190–196. MIT Press, Cambridge (1996)

    Google Scholar 

  7. Hansen, L.K., Salamon, P.: Neural Network Ensembles. IEEE Trans. Pattern Analysis and Machine Intelligence 12, 993–1001 (1990)

    Article  Google Scholar 

  8. Krogh, A., Vedelsby, J.: Neural Network Ensembles, Cross Validation, and Active Learning. In: Tesauro, G., Touretzky, D., Leen, T. (eds.) Advances in Neural Information Processing Systems 7, pp. 231–238. MIT Press, Cambridge (1995)

    Google Scholar 

  9. Schapire, R.E.: The Strength of Weak Learnability. Machine Learning 5, 197–227 (1990)

    Google Scholar 

  10. Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  11. Zhou, Z.-H., Jiang, Y., Yang, Y.-B., Chen, S.-F.: Lung Cancer Cell Identification Based on Artificial Neural Network Ensembles. Artificial Intelligence in Medicine 24, 25–36 (2002)

    Article  MATH  Google Scholar 

  12. Zhou, Z.H., Jiang, Y.: Medical Diagnosis with C4.5 Rule Preceded by Artificial Neural Network Ensemble. IEEE Transactions on Information Technology in Biomedicine 7, 37–42 (2003)

    Article  Google Scholar 

  13. American College of Radiology: Illustrated Breast Imaging Reporting and Data System, 3rd edn., Reston(VA): American College of Radiology (1998)

    Google Scholar 

  14. Kegelmeyer Jr., W.P., Prundeda, J.M., Bourland, P.D., Hillis, A., Riggs, M.W., Nipper, M.L.: Computer-aided Mammographic Screening for Spiculated Lesions. Radiology 191, 331–336 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, N., Zhou, H., Ling, J., Zhou, Z. (2005). Spiculated Lesion Detection in Digital Mammogram Based on Artificial Neural Network Ensemble. In: Wang, J., Liao, XF., Yi, Z. (eds) Advances in Neural Networks – ISNN 2005. ISNN 2005. Lecture Notes in Computer Science, vol 3498. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11427469_125

Download citation

  • DOI: https://doi.org/10.1007/11427469_125

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25914-5

  • Online ISBN: 978-3-540-32069-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics