Abstract
The Newton-Krylov method is used to solve the incompressible Navier-Stokes equations. In the present study, two numerical schemes are considered for the method: employing the predictor-corrector method as preconditioner, and solving the equations without the preconditioner. The standard driven cavity flow is selected as the test problem to demonstrate the efficiency and the reliability of the present preconditioned method. It is found that the Newton-Krylov method becomes more efficient if combined with the preconditioner.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton Method. SIAM J. Numer. Anal. 19, 400–408 (1982)
Eisenstat, S.C., Walker, H.F.: Globally Convergent Inexact Newton Methods. SIAM J. Optim. 4, 393–422 (1994)
Eisenstat, S.C., Walker, H.F.: Choosing The Forcing Terms In An Inexact Newton Method. SIAM J. Sci. Comput. 17, 16–32 (1996)
Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method. Society for Industrial and Applied Mathematics (2003)
Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. Society for Industrial and Applied Mathematics (1995)
Kim, J.H., Kim, Y.H.: A Predictor-Corrector Method For Structural Nonlinear Analysis. Comput. Methods Appl. Mech. Engrg. 191, 959–974 (2001)
Knoll, D.A., Mousseau, V.A.: On Newton-Krylov multigrid methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 163, 262–267 (2000)
Knoll, D.A., Keyes, D.E.: Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193, 357–397 (2004)
Pernice, M., Tocci, M.D.: A Multigrid-Preconditioned Newton-Krylov Method for the Incompressible Navier-Stokes Equations. SIAM J. Sci. Comput. 23, 398–418 (2001)
Chia, U., Chia, K.N., Shin, T.: High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method. J. Comput. Phys. 48, 387–411 (1982)
Roache, P.J.: Fundamentals of Computational Fluid Dynamics. Hermosa Publishers (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ju, J., Lapenta, G. (2005). Predictor-Corrector Preconditioned Newton-Krylov Method For Cavity Flow. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds) Computational Science – ICCS 2005. ICCS 2005. Lecture Notes in Computer Science, vol 3514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11428831_11
Download citation
DOI: https://doi.org/10.1007/11428831_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26032-5
Online ISBN: 978-3-540-32111-8
eBook Packages: Computer ScienceComputer Science (R0)