Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Globally Exponential Stability of Non-autonomous Delayed Neural Networks

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3523))

Included in the following conference series:

  • 1653 Accesses

Abstract

Globally exponential stability of non-autonomous delayed neural networks is considered in this paper. By utilizing delay differential inequalities, a new sufficient condition ensuring globally exponential stability for non-autonomous delayed neural networks is presented. The condition does not require that the delay function be differentiable or the coefficients be bounded. Due to this reason, the condition improves and extends those given in the previous literature.

The project was supported by the National Natural Science Foundation of China (Grant Nos. 60403001, 60403002)and China Postdoctoral Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arik, S.: An improved global stability result for delayed cellular neural networks. IEEE Trans.Circuits Syst.I. 49, 1211–1214 (2002)

    Article  MathSciNet  Google Scholar 

  2. Arik, S.: An analysis of global asymptotic stability of delayed cellular neural networks. IEEE Trans. Neural Networks 13, 1239–1242 (2002)

    Article  Google Scholar 

  3. Cao, J., Wang, J.: Global asymptotic stability of a general class of recurrent neural networks with time-varying delays. IEEE Trans. Circuits Syst. I. 50, 34–44 (2003)

    Article  MathSciNet  Google Scholar 

  4. Chen, A., Cao, J., Huang, L.: An estimation of upperbound of delays for global asymptotic stability of delayed Hopfiled neural networks. IEEE Trans. Circuits Syst. I. 49, 1028–1032 (2002)

    Article  MathSciNet  Google Scholar 

  5. Chua, L.O., Yang, L.: Cellular neural networks:theory and applications. IEEE Trans. Circuits Syst. I. 35, 1257–1290 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. Feng, C.H., Plamondon, R.: On the stability analysis of delayed neural networks systems. Neural Networks 14, 1181–1188 (2001)

    Article  Google Scholar 

  7. Huang, H., Cao, J.: On global asymptotic stability of recurrent neural networks with time-varying delays. Appl. Math. Comput. 142, 143–154 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Liao, X., Chen, G., Sanchez, E.N.: LMI-based approach for asymptotically stability analysis of delayed neural networks. IEEE Trans. Circuits Syst. I. 49, 1033–1039 (2002)

    Article  MathSciNet  Google Scholar 

  9. Liao, X.X., Wang, J.: Algebraic criteria for global exponential stability of cellular neural networks with multiple time delays. IEEE Trans. Circuits Syst. I. 50, 268–274 (2003)

    Article  MathSciNet  Google Scholar 

  10. Mohamad, S., Gopalsamy, K.: Exponential stability of continuous-time and discrete-time cellular neural networks with delays. Appl. Math. Comput. 135, 17–38 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Roska, T., Wu, C.W., Chua, L.O.: Stability of cellular neural network with dominant nonlinear and delay-type templates. IEEE Trans. Circuits Syst. 40, 270–272 (1993)

    Article  MATH  Google Scholar 

  12. Zeng, Z., Wang, J., Liao, X.: Global exponential stability of a general class of recurrent neural networks with time-varying delays. IEEE Trans. Circuits Syst. I. 50, 1353–1358 (2003)

    Article  MathSciNet  Google Scholar 

  13. Zhang, J.: Globally exponential stability of neural networks with variable delays. IEEE Trans. Circuits Syst. I. 50, 288–290 (2003)

    Article  Google Scholar 

  14. Zhang, Q., Ma, R., Xu, J.: Stability of cellular neural networks with delay. Electron. Lett. 37, 575–576 (2001)

    Article  Google Scholar 

  15. Qiang, Z., Ma, R., Chao, W., Jin, X.: On the global stability of delayed neural networks. IEEE Trans. Automatic Control 48, 794–797 (2003)

    Article  Google Scholar 

  16. Zhang, Q., Wei, X.P., Xu, J.: Global Exponential Convergence Analysis of Delayed Neural Networks with Time-Varying Delays. Phys. Lett. A 318, 537–544 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhang, Q., Wei, X.P., Xu, J.: Global Asymptotic Stability of Hopfield Neural Networks with Transmission Delays. Phys. Lett. A 318, 399–405 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zhang, Q., Wei, X.P., Xu, J.: An Analysis on the Global Asymptotic Atability for Neural Networks with Variable Delays. Phys. Lett. A 328, 163–169 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zhang, Q., Wei, X.P., Xu, J.: On Global Exponential Stability of Delayed Cellular Neural Networks with Time-Varying Delays. Appl. Math. Comput. 162, 679–686 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhang, Q., Wei, X.P., Xu, J.: Delay-Dependent Exponential Stability of Cellular Neural Networks with Time-Varying Delays. Chaos, Solitons & Fractals 23, 1363–1369 (2005)

    MATH  MathSciNet  Google Scholar 

  21. Zhou, D., Cao, J.: Globally exponential stability conditions for cellular neural networks with time-varying delays. Appl. Math. Comput. 131, 487–496 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jiang, H., Li, Z., Teng, Z.: Boundedness and stability for nonautonomous cellular neural networks with delay. Phys. Lett. A 306, 313–325 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hou, C., Qian, J.: Remarks on quantitative analysis for a family of scalar delay differential inequalities. IEEE Trans. Automatic Control 44, 334–336 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Q., Liu, W., Wei, X., Xu, J. (2005). Globally Exponential Stability of Non-autonomous Delayed Neural Networks. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds) Pattern Recognition and Image Analysis. IbPRIA 2005. Lecture Notes in Computer Science, vol 3523. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11492542_12

Download citation

  • DOI: https://doi.org/10.1007/11492542_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26154-4

  • Online ISBN: 978-3-540-32238-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics