Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Flow of Data and the Complexity of Algorithms

  • Conference paper
New Computational Paradigms (CiE 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3526))

Included in the following conference series:

Abstract

Let C be a program written in a formal language in order to be executed by some kind of machinery. A statement about C might be true or false and has the form C:M. For the time being, just consider the statement C:M as a collection of data yielding information about the resources required to execute C; and if we know that C:M is true (or false), we know something useful when it comes to determine the computational complexity of C. Let Γ be a set of statements, and let Γ⊧C:M denote that C:M will be true if all the statements in Γ are true. (The statements in Γ might say something about the computational complexity of the subprograms of C.) If Γ = 0, we will simply write⊧C:M.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aho, A.V., Hopcroft, J.E., Jeffrey, D.: The design and analysis of computer algorithms. Addison-Wesley Publishing Co., Reading (1975)

    Google Scholar 

  2. Bellantoni, S.J., Cook, S.: A New Recursion-Theoretic Characterization of the Polytime Functions. Computational Complexity 2, 97–110 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Caseiro, V.H.: Equations for Defining Poly-time Functions. Ph.D. thesis, Dept. of informatics, Faculty of Mathematics and Natural Sciences University of Oslo (February 1997)

    Google Scholar 

  4. Frederiksen, C.C.: Automatic runtime analysis for first order functional programs. Master Thesis, Dep. of Computer Science, University of Copenhagen (2002)

    Google Scholar 

  5. Jones, N.D.: The expressive power of higher-order types or, life without CONS. J. Functional Programming 11, 55–94 (2001)

    Article  MATH  Google Scholar 

  6. Jones, N.D.: LOGSPACE and PTIME characterized by programming languages. Theoretical Computer Science 228, 151–174 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jones, N.D., Bohr, N.: Termination analysis of the untyped lambda-calculus. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 1–23. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Kristiansen, L.: Neat function algebraic characterizations of LOGSPACE and LINSPACE. Computational Complexity 14, 72–88 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kristiansen, L., Niggl, K.-H.: On the computational complexity of imperative programming languages. Theoretical Computer Science 318, 139–161 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kristiansen, L., Niggl, K.-H.: The Garland Measure and Computational Complexity of Stack Programs. Electronic Notes in Theoretical Computer Science, vol. 90. Elsevier, Amsterdam (2003)

    Google Scholar 

  11. Kristiansen, L., Voda, P.J.: Complexity classes and fragments of C. Information Processing Letters 88, 213–218 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kristiansen, L., Voda, P.J.: Programming languages capturing complexity classes (submitted)

    Google Scholar 

  13. Lee, C.S., Jones, N., Ben-Amram, A.M.: The size-change principle for program termination. ACM Principles of Programming Languages, pp. 81–92. ACM Press, New York (2001)

    Google Scholar 

  14. Leivant, D.: Intrinsic theories and computational complexity. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 177–194. Springer, Heidelberg (1995)

    Google Scholar 

  15. Niggl, K.-H.: Control Structures in Programs and Computational Complexity. Annals of Pure and Applied Logic 133, 247–273 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Simmons, H.: The realm of primitive recursion. Arch. Math. Logic 27, 177–188 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kristiansen, L., Jones, N.D. (2005). The Flow of Data and the Complexity of Algorithms. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds) New Computational Paradigms. CiE 2005. Lecture Notes in Computer Science, vol 3526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494645_33

Download citation

  • DOI: https://doi.org/10.1007/11494645_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26179-7

  • Online ISBN: 978-3-540-32266-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics