Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robustness of Radial Basis Functions

  • Conference paper
Computational Intelligence and Bioinspired Systems (IWANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3512))

Included in the following conference series:

Abstract

Neural networks are intended to be used in future nanoelectronics since these architectures seem to be robust against malfunctioning elements and noise. In this paper we analyze the robustness of radial basis function networks and determine upper bounds on the mean square error under noise contaminated weights and inputs.

This work was supported by the Graduate College 776 – Automatic Configuration in Open Systems- funded by the Deutsche Forschungsgemeinschaft.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Geva, S., Sitte, J.: A constructive method for multivariate function approximation by multilayer perceptrons. IEEE Transactions on Neural Networks 3, 621–624 (1992)

    Article  Google Scholar 

  2. Haykin, S.: Neural Networks. A Comprehensive Foundation, 2nd edn. Prentice Hall, New Jersey (1999)

    MATH  Google Scholar 

  3. Rückert, U., Surmann, H.: Tolerance of a binary associative memory towards stuck-at-faults. In: Kohonen, T. (ed.) Artificial Neural Networks, Amsterdam, North-Holland, vol. 2, pp. 1195–1198 (1991)

    Google Scholar 

  4. Rückert, U., Kreuzer, I., Tryba, V.: Fault-tolerance of associative memories based on neural networks. In: Proceedings of the International Conference on Computer Technology, Systems and Applications, Hamburg, Germany, pp. 1.52–1.55 (1989)

    Google Scholar 

  5. Beiu, V., Rückert, U., Roy, S., Nyathi, J.: On nanoelectronic architectural challenges and solutions. In: Fourth IEEE Conference on Nanotechnology (2004)

    Google Scholar 

  6. Razavi, B.: Design of Analog CMOS Integrated Circuits. McGraw-Hill, New York (2000)

    Google Scholar 

  7. Sitte, J., Körner, T., Rückert, U.: Local cluster neural net: Analog vlsi design. Neurocomputing 19, 185–197 (1998)

    Article  Google Scholar 

  8. Körner, T., Rückert, U., Geva, S., Malmstrom, K., Sitte, J.: Vlsi friendly neural network with localied transfer functions. In: Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, vol. 1, pp. 169–174 (1995)

    Google Scholar 

  9. Widrow, B., Kollár, J.: Quantization Noise. Prentice Hall PTR, New Jersey (2002)

    Google Scholar 

  10. Chandra, P., Singh, Y.: Feedforward sigmoidal networks - equicontinuiy and fault-tolerance properties. IEEE Transactions on Neural Networks 15, 1350–1366 (2004)

    Article  Google Scholar 

  11. Girosi, F., Poggio, T.: Networks and the best approximation property. Biological Cybernetics 63, 169–176 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks architectures. Neural Computation 7, 219–269 (1995)

    Article  Google Scholar 

  13. Simmons, G.F.: Topology and Modern Analysis, McGray-Hill, Tokyo, Japan (1964)

    Google Scholar 

  14. Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eickhoff, R., Rückert, U. (2005). Robustness of Radial Basis Functions. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_33

Download citation

  • DOI: https://doi.org/10.1007/11494669_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26208-4

  • Online ISBN: 978-3-540-32106-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics