Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Approach to Reduce the Cost of Evaluation in Evolutionary Learning

  • Conference paper
Computational Intelligence and Bioinspired Systems (IWANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3512))

Included in the following conference series:

  • 2538 Accesses

Abstract

The supervised learning methods applying evolutionary algorithms to generate knowledge model are extremely costly in time and space. Fundamentally, this high computational cost is fundamentally due to the evaluation process that needs to go through the whole datasets to assess their goodness of the genetic individuals. Often, this process carries out some redundant operations which can be avoided. In this paper, we present an example reduction method to reduce the computational cost of the evolutionary learning algorithms by means of extraction, storage and processing only the useful information in the evaluation process.

This research was supported by the Spanish Research Agency CICYT and European FEDER Funds, under grants TIN2004–00159 and TIN2004–06689–C03–03.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aguilar–Ruiz, J.S., Riquelme, J.C., Toro, M.: Evolutionary Learning of Hierarchical Decision Rules. IEEE Transactions on Systems, Man and Cybernetics – Part B 33(2), 324–331 (2003)

    Article  Google Scholar 

  2. Aguilar, J.S.: Discovering Hierarchical Decision Rules with Evolutionary Algorithms in Supervised Learning. PhD thesis, University de Seville (2001)

    Google Scholar 

  3. Bacardit, J., Garrell, J.M.: Evolving multiple discretizations with adaptive intervals for a Pittsburgh Rule-Based Learning Classifier System. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1818–1831. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Bacardity, J., Garrell, J. M.: Incremental Learning for Pittsburgh Approach Classifier Systems. In: 2nd. Spanish Conference on Metaheuristics and Evolutionary Algorithms (MAEB 2003), Gijón, Spain, pp. 303–311 (2003)

    Google Scholar 

  5. Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. University of California, Irvine. Department of Information and Computer Science (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  6. Clark, P., Boswell, R.: Rule induction with cn2: Some recents improvements. In: Kodratoff, Y. (ed.) EWSL 1991. LNCS, vol. 482, pp. 151–163. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  7. DeJong, K.A., Spears, W.M., Gordon, D.F.: Using genetic algorithms for concept learning. Machine Learning 1(13), 161–188 (1993)

    Article  Google Scholar 

  8. Divina, F., Marchiori, E.: Evolutionary Concept Learning. In: Langdon, W.B., et al. (eds.) Genetic and Evolutionary Computation Conference - GECCO 2002, pp. 343–350. Morgan Kaufmann, NY (2002)

    Google Scholar 

  9. Domingos, P.: Rule induction and instance-based learning: A unified approach. In: Proceedings of International Joint Conference on Artificial Intelligence (1995)

    Google Scholar 

  10. Giráldez, R., Aguilar-Ruiz, J.S., Riquelme, J.C., Mateos, D.: Discretization Oriented to Decision Rule Generation. In: Proceedings of International Conference on Knowledge-Based Intelligent Information & Engineering Systems, pp. 275–279. IOS Press, Crema (2002)

    Google Scholar 

  11. Giráldez, R., Aguilar-Ruiz, J.S., Riquelme, J.C.: Natural Coding: A More Efficient Representation for Evolutionary Learning. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 279–290. Springer, Heidelberg (2003)

    Google Scholar 

  12. Giráldez, R., Aguilar–Ruiz, J.S., Riquelme, J.C.: Knowledge-based Fast Evaluation for Evolutionary Learning. IEEE Transactions on Systems, Man & Cybernetics – Part C (2005) (in press)

    Google Scholar 

  13. Janikow, C.Z.: A knowledge-intensive genetic algorithm for supervised learning. Machine Learning 1(13), 169–228 (1993)

    Google Scholar 

  14. Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic, Dordrecht (1998)

    MATH  Google Scholar 

  15. Murthy, S.K., Kasif, S., Salzberg, S.: A system for induction of oblique decision trees. Journal of Artificial Intelligence Research (1994)

    Google Scholar 

  16. Shim, K.: SIGKDD Explorations, 2(2) (December 2000)

    Google Scholar 

  17. Venturini, G.: SIA: a supervised inductive algorithm with genetic search for learning attributes based concepts. In: Proceedings of European Conference on Machine Learning, pp. 281–296 (1993)

    Google Scholar 

  18. Wilson, D.R., Martinez, T.R.: Reduction Techniques for Instance–Based Learning Algorithms. Machine Learning 38(3), 257–286 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giráldez, R., Díaz-Díaz, N., Nepomuceno, I., Aguilar-Ruiz, J.S. (2005). An Approach to Reduce the Cost of Evaluation in Evolutionary Learning. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_98

Download citation

  • DOI: https://doi.org/10.1007/11494669_98

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26208-4

  • Online ISBN: 978-3-540-32106-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics