Abstract
The supervised learning methods applying evolutionary algorithms to generate knowledge model are extremely costly in time and space. Fundamentally, this high computational cost is fundamentally due to the evaluation process that needs to go through the whole datasets to assess their goodness of the genetic individuals. Often, this process carries out some redundant operations which can be avoided. In this paper, we present an example reduction method to reduce the computational cost of the evolutionary learning algorithms by means of extraction, storage and processing only the useful information in the evaluation process.
This research was supported by the Spanish Research Agency CICYT and European FEDER Funds, under grants TIN2004–00159 and TIN2004–06689–C03–03.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aguilar–Ruiz, J.S., Riquelme, J.C., Toro, M.: Evolutionary Learning of Hierarchical Decision Rules. IEEE Transactions on Systems, Man and Cybernetics – Part B 33(2), 324–331 (2003)
Aguilar, J.S.: Discovering Hierarchical Decision Rules with Evolutionary Algorithms in Supervised Learning. PhD thesis, University de Seville (2001)
Bacardit, J., Garrell, J.M.: Evolving multiple discretizations with adaptive intervals for a Pittsburgh Rule-Based Learning Classifier System. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1818–1831. Springer, Heidelberg (2003)
Bacardity, J., Garrell, J. M.: Incremental Learning for Pittsburgh Approach Classifier Systems. In: 2nd. Spanish Conference on Metaheuristics and Evolutionary Algorithms (MAEB 2003), Gijón, Spain, pp. 303–311 (2003)
Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. University of California, Irvine. Department of Information and Computer Science (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html
Clark, P., Boswell, R.: Rule induction with cn2: Some recents improvements. In: Kodratoff, Y. (ed.) EWSL 1991. LNCS, vol. 482, pp. 151–163. Springer, Heidelberg (1991)
DeJong, K.A., Spears, W.M., Gordon, D.F.: Using genetic algorithms for concept learning. Machine Learning 1(13), 161–188 (1993)
Divina, F., Marchiori, E.: Evolutionary Concept Learning. In: Langdon, W.B., et al. (eds.) Genetic and Evolutionary Computation Conference - GECCO 2002, pp. 343–350. Morgan Kaufmann, NY (2002)
Domingos, P.: Rule induction and instance-based learning: A unified approach. In: Proceedings of International Joint Conference on Artificial Intelligence (1995)
Giráldez, R., Aguilar-Ruiz, J.S., Riquelme, J.C., Mateos, D.: Discretization Oriented to Decision Rule Generation. In: Proceedings of International Conference on Knowledge-Based Intelligent Information & Engineering Systems, pp. 275–279. IOS Press, Crema (2002)
Giráldez, R., Aguilar-Ruiz, J.S., Riquelme, J.C.: Natural Coding: A More Efficient Representation for Evolutionary Learning. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 279–290. Springer, Heidelberg (2003)
Giráldez, R., Aguilar–Ruiz, J.S., Riquelme, J.C.: Knowledge-based Fast Evaluation for Evolutionary Learning. IEEE Transactions on Systems, Man & Cybernetics – Part C (2005) (in press)
Janikow, C.Z.: A knowledge-intensive genetic algorithm for supervised learning. Machine Learning 1(13), 169–228 (1993)
Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic, Dordrecht (1998)
Murthy, S.K., Kasif, S., Salzberg, S.: A system for induction of oblique decision trees. Journal of Artificial Intelligence Research (1994)
Shim, K.: SIGKDD Explorations, 2(2) (December 2000)
Venturini, G.: SIA: a supervised inductive algorithm with genetic search for learning attributes based concepts. In: Proceedings of European Conference on Machine Learning, pp. 281–296 (1993)
Wilson, D.R., Martinez, T.R.: Reduction Techniques for Instance–Based Learning Algorithms. Machine Learning 38(3), 257–286 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Giráldez, R., Díaz-Díaz, N., Nepomuceno, I., Aguilar-Ruiz, J.S. (2005). An Approach to Reduce the Cost of Evaluation in Evolutionary Learning. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_98
Download citation
DOI: https://doi.org/10.1007/11494669_98
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26208-4
Online ISBN: 978-3-540-32106-4
eBook Packages: Computer ScienceComputer Science (R0)