Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Fuzzy Identity-Based Temporal GIS for the Analysis of Geomorphometry Changes

  • Conference paper
Journal on Data Semantics III

Part of the book series: Lecture Notes in Computer Science ((JODS,volume 3534))

Abstract

Despite recent progress in the development of temporal Geographical Information Systems (GIS) there is still a lack of methodological integration with geophysical models oriented to the study of Earth changes. This paper introduces a temporal GIS modelling approach which complements a process-based geomorphological experimental apparatus that simulates erosion-sedimentation phenomena over a geological period of time. We combine a field-based with a discrete-based observation of forms and changes at different levels of abstraction. A fuzzy-based model of evolution is introduced and allows for an approximation of changes and processes. State transitions are fuzzy-valued and complemented by a quantitative analysis of change patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anselin, L., Getis, A.: Spatial statistical analysis and geographic information systems. The Annals of Regional Science 26, 19–33 (1992)

    Article  Google Scholar 

  2. Band, L.E.: Spatial hydrography and landforms. In: Longley, P.A., Goodchild, M.F., Maguire, D.J., Rhind, D.W. (eds.) Geographical Information Systems, 2nd edn., pp. 527–542. Wiley, London (1999)

    Google Scholar 

  3. Beller, A.: Spatial-temporal events in GIS. In: Proceedings of GIS/LIS 1991, vol. 57(4), pp. 407–411 (1991)

    Google Scholar 

  4. Beven, K.J., Wood, E.F.: Catchment geomorphology and the dynamics of runoff contributing areas. Journal of Hydrology 65, 139–158 (1983)

    Article  Google Scholar 

  5. Billen, R., Zlatanova, S.: 3D spatial relationships model: a useful concept for 2D cadastre? Computers, Environment and Urban Systems 27, 411–425 (2003)

    Article  Google Scholar 

  6. Bishop, I.D., Karadaglis, C.: Linking modelling and visualisation for natural resources management. Environmental and Planning B: Planning and Design 24(3), 345–358 (1997)

    Article  Google Scholar 

  7. Breunig, M.: An approach to the integration of spatial data and systems for a 3D geoinformation system. Computer and Geosciences 25, 39–48 (1999)

    Article  Google Scholar 

  8. Burrough, P.A.: Dynamic modelling and geocomputation. In: Longley, P., Brooks, S., McDonnell and McMillan, R. (eds.) Geocomputation: A Primer, pp. 165–191. John Wiley & Sons, New York (1998)

    Google Scholar 

  9. Chapman, G.P.: Human and Environmental Systems: A Geographer’s Appraisal. Academic Press, London (1977)

    Google Scholar 

  10. Claramunt, C., Thériault, M.: Managing time in GIS: An event-oriented approach. In: Clifford, J., Tuzhilin, A. (eds.) Recent Advances on Temporal Databases, pp. 21–43. Springer, Zurich (1995)

    Google Scholar 

  11. Claramunt, C., Thériault, M.: Toward semantics for modelling spatio-temporal processes within GIS. In: Kraak, M.J., Molenaar, M. (eds.) Advances in GIS Research, Delft, pp. 47–63. Taylor & Francis, Abington (1996)

    Google Scholar 

  12. Clarke, R.T.: A review of some mathematical models used in hydrology, with observations on their calibration and use. Journal of Hydrology 19, 1–20 (1973)

    Article  Google Scholar 

  13. Crave, A., Lague, D., Davy, P., Kermarrec, P., Sokoutis, J.: Analog modelling of relief dynamic. Physics and Chemistry of the Earth 25, 549–553 (2000)

    Article  Google Scholar 

  14. Czirok, A., Somfai, E., Vicsek, T.: Experimental evidence for sel-affine roughning in a micro-model of geomorphological evolution. Physical review Letters 71, 2154–2157 (1993)

    Article  Google Scholar 

  15. De la Losa, A., Cervelle, B.: 3D topological modelling and visualisation for 3D GIS. Computers & Graphics 23, 469–478 (1999)

    Article  Google Scholar 

  16. Fisher, P., Wood, J., Cheng, T.: Where is helvellyn? Fuzziness of multi-scale landscape morphometry. Transactions of the Institute of British Geographers 29, 106–128 (2004)

    Article  Google Scholar 

  17. Goodchild, M.F., Steyaert, L.T., Parks, B.O. (eds.): GIS and Environmental Modelling: Progress and Research Issues, Fort Collins. GIS World Books (1996)

    Google Scholar 

  18. Hornsby, K., Egenhofer, M.: Qualitative representation of change. In: Frank, A.U. (ed.) COSIT 1997. LNCS, vol. 1329, pp. 15–33. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  19. Koshafian, S., Copeland, G.: Object identity. SIGPLAN Notices 21, 406–416 (1986)

    Article  Google Scholar 

  20. Langran, G.: States, events and evidence: the principle entities of a temporal GIS. In: Proceedings of GIS/LIS 1992, pp. 416–425 (1992)

    Google Scholar 

  21. Maidment, D.R., Djokic, D. (eds.): Hydrologic and Hydraulic Modeling Support with GIS, p. 216. ESRI Press, Redlands CA (2000)

    Google Scholar 

  22. Mark, D.M., Aronson, P.B.: Scale-dependent fractal dimensions of topographic surfaces: An empirical investigation with applications in geomorphology and computer mapping. Mathematical Geology 16(7), 671–683 (1984)

    Article  Google Scholar 

  23. Marschallinger, R.: A voxel visualisation and analysis system based on Autocad. Computer and Geosciences 22, 379–386 (1996)

    Article  Google Scholar 

  24. Matsumoto, S., Raghavan, V., Yonezawa, G., Nemoto, T., Shiono, K.: Construction and visualisation of a three dimensional geologic model using GRASS GIS. Transactions and GIS 8(2), 211–223 (2004)

    Article  Google Scholar 

  25. Mendonça, L., Claramunt, C.: An integrated landscape and local analysis of land cover evolution in an alluvial zone. In: Computer Environment and Urban Systems, vol. 25(6), pp. 557–577. Pergamon, Oxford (2001)

    Google Scholar 

  26. Mitasova, H., Mitas, L., Brown, W., Gerdes, D., Kosinovsky, I., Baker, T.: Modeling spatially and temporally distributed phenomena: new methods and tools for GRASS GIS. International Journal of GIS 9(4), 433–446 (1995)

    Google Scholar 

  27. Molenaar, M., Cheng, T.: Fuzzy spatial objects and their dynamics. ISPRS Journal of Photogrammetry and Remote Sensing 55, 164–175 (2000)

    Article  Google Scholar 

  28. Montgomery, D.R., Balco, G., Willet, S.D.: Climate, tectonics and the morphology of the Andes. Geology 29, 579–582 (2001)

    Article  Google Scholar 

  29. Nunes, J.: Geographic space as a set of concrete geographical entities. In: Mark, D.M., Frank, A.U. (eds.) Cognitive and Linguistic Aspect of Geographical Space, pp. 9–33. Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  30. O’Neill, R.V., Krummel, J.R., Gardner, R.H., Sugihara, G., Jackson, B., De Angelis, D.L., Milne, B.T., Turner, M.G., Zygmunt, B., Christensen, S.W., Dale, V.H., Graham, R.L.: Indices of landscape pattern. Landscape Ecology 1(13), 153–162 (1988)

    Article  Google Scholar 

  31. Peuquet, D.J.: It’s about time: a conceptual framework for the representation of temporal dynamics in geographic information systems. Annals of the Association of American Geographers 84(3), 441–461 (1994)

    Article  Google Scholar 

  32. Peuquet, D.J.: Making space for time: Issues in space-time data representations. Geoinformatica 5(1), 11–32 (2001)

    Article  MATH  Google Scholar 

  33. Pike, R.J.: A Bibliography of Geomorphology, United States Geological Survey Open File Report 93-262-1, Menlo Park, CA (1993)

    Google Scholar 

  34. Rhoads, B.L., Thorn, C.E.: The scientific nature of geomorphology. In: Proceedings of the 27th Binghantom Symposium in Geomorphology. John Wiley & Sons, Chichester (1996)

    Google Scholar 

  35. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)

    MATH  Google Scholar 

  36. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana IL (1949)

    MATH  Google Scholar 

  37. Shi, W., Yang, B., Li, Q.: An object-oriented data model for complex objects in three-dimensional GIS. International Journal of GIS 17(5), 411–430 (2003)

    Google Scholar 

  38. Smith, B.: Fiat Objects. In: Guarino, N., Vieu, L., Pribbenow, S. (eds.) Parts and wholes: conceptual part-whole relations and formal mereology. In Proceedings of the 11th European Conference on Artificial Intelligence, Amsterdam, pp. 15–23 (1994)

    Google Scholar 

  39. Smith, B., Mark, D.M.: Do mountains exist? Towards an ontology of landforms. Environment and Planning B: Planning and Design 30(3), 411–427 (2003)

    Article  Google Scholar 

  40. Srinivisan, R., Arnold, J.G.: Integration of a basin-scale water quality model with GIS. Water Resources Bulletin 30(3), 453–462 (1994)

    Google Scholar 

  41. Tse, R., Gold, C.: A proposed connectivity-based model for a 3-D cadastre. Computers, Environment and Urban Systems 27, 427–445 (2003)

    Article  Google Scholar 

  42. USDA-SCSNational Engineering Handbook, Section 4 – Hydrology, Washington D.C., USDA-SCS (1985)

    Google Scholar 

  43. Wittmann, R., Kautzky, T., Hübler, A., Lücher, E.: A simple experiment for the examination of dendritic river systems. Naturwissenschaften 78, 23–25 (1991)

    Article  Google Scholar 

  44. Wood, J.: The Geomorphological Characterisation of Digital Elevation Models, Unpublished PhD report, University of Leicester, UK (1996)

    Google Scholar 

  45. Worboys, M.: A unified model for spatial and temporal information. The Computer Journal 37(1), 26–34 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sriti, M., Thibaud, R., Claramunt, C. (2005). A Fuzzy Identity-Based Temporal GIS for the Analysis of Geomorphometry Changes. In: Spaccapietra, S., Zimányi, E. (eds) Journal on Data Semantics III. Lecture Notes in Computer Science, vol 3534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11496168_4

Download citation

  • DOI: https://doi.org/10.1007/11496168_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26225-1

  • Online ISBN: 978-3-540-31551-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics