Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Unified and Complete Framework of Invariance for Six Points

  • Conference paper
Computer Algebra and Geometric Algebra with Applications (IWMM 2004, GIAE 2004)

Abstract

Projective geometric invariants play an important role in computer vision. To set up the invariant relationships between spatial points and their images from a single view, at least six pairs of spatial and image points are required. In this paper, we establish a unified and complete framework of the invariant relationships for six points. The framework covers the general case already developed in the literature and two novel cases. The two novel cases describe that six spatial points and the camera optical center lie on a quadric cone or a twisted cubic, called quadric cone case or twisted cubic case. For the general case and quadric cone case, camera parameters can be determined uniquely. For the twisted cubic case, camera parameters cannot be determined completely; this configuration of camera optical center and spatial points is called a critical configuration. The established unified framework may help to effectively identify the type of geometric information appearing in certain vision tasks, in particular critical geometric information. An obvious advantage using this framework to obtain geometric information is that no any explicit estimation on camera projective matrix and optical center is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdel-Aziz, Y.I., Karara, H.M.: Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. In: Proc. ASP/UI Symp. on Close Range Photogrammetry, pp. 1–18 (1971)

    Google Scholar 

  2. Bayro-Crrochano, E., Banarer, V.: A geometric approach for the theory and applications of 3D projective invariants. Journal of Mathematical Imaging and Vision 16(2), 131–154 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bayro-Corrochano, E., Rosenhahn, B.: A geometric approach for the analysis and computation of the intrinsic camera parameters. Pattern Recognition 35, 169–186 (2002)

    Article  MATH  Google Scholar 

  4. Carlsson, S.: Symmetry in perspective. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 249–263. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  5. Carlsson, S.: View variation and linear invariants in 2-D and 3-D. Tech. Rep. ISRN KTH/NA/P–95/22–SE (December 1995)

    Google Scholar 

  6. Csurka, G., Faugeras, O.: Algebraic and geometric tools to compute projective and permutation invariants. IEEE Trans. Pattern Analysis and Machine Intelligence 21(1), 58–65 (1999)

    Article  Google Scholar 

  7. Faugeras, O., Luong, Q.T.: The geometry of multiple images. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  8. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  9. Hartley, R.: Projective reconstruction and invariants from multiple images. IEEE Trans. Pattern Analysis and Machine Intelligence 16(10), 1036–1041 (1994)

    Article  Google Scholar 

  10. Hestenes, D., Sobczyk, G.: Clifford algebra to geometric calculus. D. Reidel, Dordrecht (1984)

    MATH  Google Scholar 

  11. Lasenby, J., Bayro-Corrochano, E., Lasenby, A., Sommer, G.: A new methodology for computing invariants in computer vision. In: Proc. 13th Int. Conf. on Pattern Recognition, pp. 393–397 (1996)

    Google Scholar 

  12. Li, H., Hestenes, D., Rockwood, A.: Generalized homogeneous coordinates for computational geometry. In: Sommer, G. (ed.) Geometric computing with clifford algebra, pp. 27–52. Springer, Berlin (2001)

    Google Scholar 

  13. Mundy, L., Zisserman, A. (eds.): Geometric invariant in computer vision. MIT Press, Cambridge (1992)

    Google Scholar 

  14. Mundy, J.L., Zisserman, A., Forsyth, D. (eds.): AICV 1993. LNCS, vol. 825. Springer, Heidelberg (1994)

    Google Scholar 

  15. Quan., L.: Invariants of 6 points from 3 uncalibrated images. In: ECCV, pp. 459–470 (1994)

    Google Scholar 

  16. Quan, L.: Invariants of six points and projective reconstruction from three uncalibrated images. IEEE Trans. Pattern Analysis and Machine Intelligence 17(1), 34–46 (1995)

    Article  Google Scholar 

  17. Roh, K.S., Kweon, I.S.: 3-D object recognition using a new invariant relationship by single-view. Pattern Recognition 33, 741–754 (2000)

    Article  Google Scholar 

  18. Schaffalitzky, F., Zisserman, A., Hartley, R., Torr, P.: A six point solution for structure and motion. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 632–648. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Invariant methods in discrete and computational geometry. In: White, N.L. (ed.) Proc. Curacao Conference, June 1994. Kluwer Academic Publishers, Dordrecht (1994)

    Google Scholar 

  20. Sommer, G., Daniilidis, K., Pauli, J. (eds.): CAIP 1997. LNCS, vol. 1296. Springer, Heidelberg (1997)

    Google Scholar 

  21. Sommer, G. (ed.): Geometric computing with clifford algebra. Springer, Berlin (2001)

    Google Scholar 

  22. Sturmfels, B.: Algorithm in invariant theory. Springer, Wien (1993)

    Google Scholar 

  23. Wu, Y.: Bracket algebra, affine bracket algebra, and automated geometric theorem proving. Ph. D. Dissertation, Institute of Systems Science, Chinese Academy of Sciences, Beijing (2001)

    Google Scholar 

  24. Wu, Y., Hu, Z.: The invariant representations of a quadric cone and a twisted cubic. IEEE Trans. on Pattern Recognition and Machine Inteligence 25(10), 1329–1332 (2003)

    Article  Google Scholar 

  25. Wu, Y., Hu, Z.: A unified and complete framework of invariance for six points and its application to recognize critical configuration for 3D reconstruction. Technical Report, RV-NLPR, Institute of Automation, Chinese Academy of Sciences (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, Y., Hu, Z. (2005). A Unified and Complete Framework of Invariance for Six Points. In: Li, H., Olver, P.J., Sommer, G. (eds) Computer Algebra and Geometric Algebra with Applications. IWMM GIAE 2004 2004. Lecture Notes in Computer Science, vol 3519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499251_28

Download citation

  • DOI: https://doi.org/10.1007/11499251_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26296-1

  • Online ISBN: 978-3-540-32119-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics