Abstract
Projective geometric invariants play an important role in computer vision. To set up the invariant relationships between spatial points and their images from a single view, at least six pairs of spatial and image points are required. In this paper, we establish a unified and complete framework of the invariant relationships for six points. The framework covers the general case already developed in the literature and two novel cases. The two novel cases describe that six spatial points and the camera optical center lie on a quadric cone or a twisted cubic, called quadric cone case or twisted cubic case. For the general case and quadric cone case, camera parameters can be determined uniquely. For the twisted cubic case, camera parameters cannot be determined completely; this configuration of camera optical center and spatial points is called a critical configuration. The established unified framework may help to effectively identify the type of geometric information appearing in certain vision tasks, in particular critical geometric information. An obvious advantage using this framework to obtain geometric information is that no any explicit estimation on camera projective matrix and optical center is needed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdel-Aziz, Y.I., Karara, H.M.: Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. In: Proc. ASP/UI Symp. on Close Range Photogrammetry, pp. 1–18 (1971)
Bayro-Crrochano, E., Banarer, V.: A geometric approach for the theory and applications of 3D projective invariants. Journal of Mathematical Imaging and Vision 16(2), 131–154 (2002)
Bayro-Corrochano, E., Rosenhahn, B.: A geometric approach for the analysis and computation of the intrinsic camera parameters. Pattern Recognition 35, 169–186 (2002)
Carlsson, S.: Symmetry in perspective. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 249–263. Springer, Heidelberg (1998)
Carlsson, S.: View variation and linear invariants in 2-D and 3-D. Tech. Rep. ISRN KTH/NA/P–95/22–SE (December 1995)
Csurka, G., Faugeras, O.: Algebraic and geometric tools to compute projective and permutation invariants. IEEE Trans. Pattern Analysis and Machine Intelligence 21(1), 58–65 (1999)
Faugeras, O., Luong, Q.T.: The geometry of multiple images. MIT Press, Cambridge (2001)
Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press, Cambridge (2000)
Hartley, R.: Projective reconstruction and invariants from multiple images. IEEE Trans. Pattern Analysis and Machine Intelligence 16(10), 1036–1041 (1994)
Hestenes, D., Sobczyk, G.: Clifford algebra to geometric calculus. D. Reidel, Dordrecht (1984)
Lasenby, J., Bayro-Corrochano, E., Lasenby, A., Sommer, G.: A new methodology for computing invariants in computer vision. In: Proc. 13th Int. Conf. on Pattern Recognition, pp. 393–397 (1996)
Li, H., Hestenes, D., Rockwood, A.: Generalized homogeneous coordinates for computational geometry. In: Sommer, G. (ed.) Geometric computing with clifford algebra, pp. 27–52. Springer, Berlin (2001)
Mundy, L., Zisserman, A. (eds.): Geometric invariant in computer vision. MIT Press, Cambridge (1992)
Mundy, J.L., Zisserman, A., Forsyth, D. (eds.): AICV 1993. LNCS, vol. 825. Springer, Heidelberg (1994)
Quan., L.: Invariants of 6 points from 3 uncalibrated images. In: ECCV, pp. 459–470 (1994)
Quan, L.: Invariants of six points and projective reconstruction from three uncalibrated images. IEEE Trans. Pattern Analysis and Machine Intelligence 17(1), 34–46 (1995)
Roh, K.S., Kweon, I.S.: 3-D object recognition using a new invariant relationship by single-view. Pattern Recognition 33, 741–754 (2000)
Schaffalitzky, F., Zisserman, A., Hartley, R., Torr, P.: A six point solution for structure and motion. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 632–648. Springer, Heidelberg (2000)
Invariant methods in discrete and computational geometry. In: White, N.L. (ed.) Proc. Curacao Conference, June 1994. Kluwer Academic Publishers, Dordrecht (1994)
Sommer, G., Daniilidis, K., Pauli, J. (eds.): CAIP 1997. LNCS, vol. 1296. Springer, Heidelberg (1997)
Sommer, G. (ed.): Geometric computing with clifford algebra. Springer, Berlin (2001)
Sturmfels, B.: Algorithm in invariant theory. Springer, Wien (1993)
Wu, Y.: Bracket algebra, affine bracket algebra, and automated geometric theorem proving. Ph. D. Dissertation, Institute of Systems Science, Chinese Academy of Sciences, Beijing (2001)
Wu, Y., Hu, Z.: The invariant representations of a quadric cone and a twisted cubic. IEEE Trans. on Pattern Recognition and Machine Inteligence 25(10), 1329–1332 (2003)
Wu, Y., Hu, Z.: A unified and complete framework of invariance for six points and its application to recognize critical configuration for 3D reconstruction. Technical Report, RV-NLPR, Institute of Automation, Chinese Academy of Sciences (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wu, Y., Hu, Z. (2005). A Unified and Complete Framework of Invariance for Six Points. In: Li, H., Olver, P.J., Sommer, G. (eds) Computer Algebra and Geometric Algebra with Applications. IWMM GIAE 2004 2004. Lecture Notes in Computer Science, vol 3519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499251_28
Download citation
DOI: https://doi.org/10.1007/11499251_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26296-1
Online ISBN: 978-3-540-32119-4
eBook Packages: Computer ScienceComputer Science (R0)