Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and Classification

  • Conference paper
Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach (IWINAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3562))

Abstract

In this survey we discuss different state-of-the-art approaches of combining exact algorithms and metaheuristics to solve combinatorial optimization problems. Some of these hybrids mainly aim at providing optimal solutions in shorter time, while others primarily focus on getting better heuristic solutions. The two main categories in which we divide the approaches are collaborative versus integrative combinations. We further classify the different techniques in a hierarchical way. Altogether, the surveyed work on combinations of exact algorithms and metaheuristics documents the usefulness and strong potential of this research direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neighborhood search techniques. Discrete Applied Mathematics 123(1-3), 75–102 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of the traveling salesman problem. Documenta Mathematica Extra Volume ICM III, 645–656 (1998)

    Google Scholar 

  3. Bäck, T., Fogel, D.B., Michalewicz, Z.: Handbook of Evolutionary Computation. Oxford University Press, New York (1997)

    Book  MATH  Google Scholar 

  4. Burke, E.K., Cowling, P.I., Keuthen, R.: Effective local and guided variable neighborhood search methods for the asymmetric travelling salesman problem. In: Boers, E., et al. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 203–212. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Chen, S., Talukdar, S., Sadeh, N.: Job-shop-scheduling by a team of asynchronous agents. In: IJCAI 1993 Workshop on Knowledge-Based Production, Scheduling and Control, Chambery, France (1993)

    Google Scholar 

  6. Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack problem. Journal of Heuristics 4, 63–86 (1998)

    Article  MATH  Google Scholar 

  7. Clements, D., Crawford, J., Joslin, D., Nemhauser, G., Puttlitz, M., Savelsbergh, M.: Heuristic optimization: A hybrid AI/OR approach (In conjunction with the Third International Conference on Principles and Practice of Constraint Programming (CP97)). In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, Springer, Heidelberg (1997)

    Google Scholar 

  8. Congram, R.K.: Polynomially Searchable Exponential Neighbourhoods for Sequencing Problems in Combinatorial Optimisation. PhD thesis, University of Southampton, Faculty of Mathematical Studies, UK (2000)

    Google Scholar 

  9. Cotta, C., Troya, J.M.: Embedding branch and bound within evolutionary algorithms. Applied Intelligence 18, 137–153 (2003)

    Article  MATH  Google Scholar 

  10. Danna, E., Rothberg, E., Le Pape, C.: Exploring relaxation induced neighbourhoods to improve MIP solutions. Technical report, ILOG (2003)

    Google Scholar 

  11. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  12. Denzinger, J., Offermann, T.: On cooperation between evolutionary algorithms and other search paradigms. In: Proceedings of the 1999 Congress on Evolutionary Computation (CEC), IEEE Press, Los Alamitos (1999)

    Google Scholar 

  13. Dumitrescu, I., Stuetzle, T.: Combinations of local search and exact algorithms. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 211–223. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Filho, G.R., Lorena, L.A.N.: Constructive genetic algorithm and column generation: an application to graph coloring. In: Proceedings of APORS 2000 - The Fifth Conference of the Association of Asian-Pacific Operations Research Societies within IFORS (2000)

    Google Scholar 

  15. Fischetti, M., Lodi, A.: Local Branching. Mathematical Programming Series B 98, 23–47 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. French, A.P., Robinson, A.C., Wilson, J.M.: Using a hybrid genetic-algorithm/branch and bound approach to solve feasibility and optimization integer programming problems. Journal of Heuristics 7, 551–564 (2001)

    Article  MATH  Google Scholar 

  17. Glover, F., Kochenberger, G.: Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 57. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  18. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht (1997)

    MATH  Google Scholar 

  19. Glover, F., Laguna, M., Martí, R.: Fundamentals of scatter search and path relinking. Control and Cybernetics 39(3), 653–684 (2000)

    Google Scholar 

  20. Hansen, P., Mladenović, N.: An introduction to variable neighborhood search. In: Voß, S., Martello, S., Osman, I., Roucairol, C. (eds.) Meta-heuristics: advances and trends in local search paradigms for optimization, pp. 433–438. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  21. Kirkpatrick, S., Gellat, C., Vecchi, M.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  22. Klau, G., Ljubić, I., Moser, A., Mutzel, P., Neuner, P., Pferschy, U., Raidl, G., Weiskircher, R.: Combining a memetic algorithm with integer programming to solve the prize-collecting Steiner tree problem. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1304–1315. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Kostikas, K., Fragakis, C.: Genetic programming applied to mixed integer programming. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 113–124. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  24. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  25. Lin, A.Z.-Z., Bean, J., White, I.C.C.: A hybrid genetic/optimization algorithm for finite horizon partially observed markov decision processes. Journal on Computing 16(1), 27–38 (2004)

    MathSciNet  Google Scholar 

  26. Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search. In: Glover and Kochenberger [17], pp. 321–353

    Google Scholar 

  27. Marino, A., Prügel-Bennett, A., Glass, C.A.: Improving graph colouring with linear programming and genetic algorithms. In: Proceedings of EUROGEN 1999, Jyväskyiä, Finland, pp. 113–118 (1999)

    Google Scholar 

  28. Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In: Glover and Kochenberger [17], pp. 105–144.

    Google Scholar 

  29. Nagar, A., Heragu, S.S., Haddock, J.: A meta-heuristic algorithm for a bi-criteria scheduling problem. Annals of Operations Research 63, 397–414 (1995)

    Article  Google Scholar 

  30. Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. John Wiley & Sons, Chichester (1988)

    MATH  Google Scholar 

  31. Plateau, A., Tachat, D., Tolla, P.: A hybrid search combining interior point methods and metaheuristics for 0-1 programming. International Transactions in Operational Research 9, 731–746 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Puchinger, J., Raidl, G.R.: An evolutionary algorithm for column generation in integer programming: an effective approach for 2D bin packing. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 642–651. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  33. Puchinger, J., Raidl, G.R.: Models and algorithms for three-stage two-dimensional bin packing. Technical Report TR 186–1–04–04, Institute of Computer Graphics and Algorithms, Vienna University of Technology, submitted to the European Journal of Operations Research (2004)

    Google Scholar 

  34. Puchinger, J., Raidl, G.R., Koller, G.: Solving a real-world glass cutting problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004. LNCS, vol. 3004, pp. 162–173. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  35. Raidl, G.R.: An improved genetic algorithm for the multiconstrained 0–1 knapsack problem. In: Fogel, D.B. (ed.) Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pp. 207–211. IEEE Press, Los Alamitos (1998)

    Google Scholar 

  36. Raidl, G.R., Feltl, H.: An improved hybrid genetic algorithm for the generalized assignment problem. In: Haddadd, H.M., others (eds.) Proceedings of the 2003 ACM Symposium on Applied Computing, pp. 990–995. ACM Press, New York (2004)

    Google Scholar 

  37. Staggemeier, A.T., Clark, A.R., Aickelin, U., Smith, J.: A hybrid genetic algorithm to solve a lot-sizing and scheduling problem. In: Proceedings of the 16th triannual Conference of the International Federation of Operational Research Societies, Edinburgh, U.K. (2002)

    Google Scholar 

  38. Talukdar, S., Baeretzen, L., Gove, A., de Souza, P.: Asynchronous teams: Cooperation schemes for autonomous agents. Journal of Heuristics 4, 295–321 (1998)

    Article  Google Scholar 

  39. Talukdar, S., Murty, S., Akkiraju, R.: Asynchronous teams. In: Glover and Kochenberger [17], pp. 537–556.

    Google Scholar 

  40. Tamura, H., Hirahara, A., Hatono, I., Umano, M.: An approximate solution method for combinatorial optimisation. Transactions of the Society of Instrument and Control Engineers 130, 329–336 (1994)

    Google Scholar 

  41. Thompson, P., Orlin, J.: The theory of cycle transfers. Technical Report OR-200-89, MIT Operations Research Center, Boston, MA (1989)

    Google Scholar 

  42. Thompson, P., Psaraftis, H.: Cycle transfer algorithm for multivehicle routing and scheduling problems. Operations Research 41, 935–946 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  43. Vasquez, M., Hao, J.-K.: A hybrid approach for the 0–1 multidimensional knapsack problem. In: Proceedings of the International Joint Conference on Artificial Intelligence 2001, pp. 328–333 (2001)

    Google Scholar 

  44. Woodruff, D.L.: A chunking based selection strategy for integrating meta-heuristics with branch and bound. In: Voss, S., et al. (eds.) Metaheuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 499–511. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Puchinger, J., Raidl, G.R. (2005). Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and Classification. In: Mira, J., Álvarez, J.R. (eds) Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach. IWINAC 2005. Lecture Notes in Computer Science, vol 3562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499305_5

Download citation

  • DOI: https://doi.org/10.1007/11499305_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26319-7

  • Online ISBN: 978-3-540-31673-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics