Abstract
In this survey we discuss different state-of-the-art approaches of combining exact algorithms and metaheuristics to solve combinatorial optimization problems. Some of these hybrids mainly aim at providing optimal solutions in shorter time, while others primarily focus on getting better heuristic solutions. The two main categories in which we divide the approaches are collaborative versus integrative combinations. We further classify the different techniques in a hierarchical way. Altogether, the surveyed work on combinations of exact algorithms and metaheuristics documents the usefulness and strong potential of this research direction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neighborhood search techniques. Discrete Applied Mathematics 123(1-3), 75–102 (2002)
Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of the traveling salesman problem. Documenta Mathematica Extra Volume ICM III, 645–656 (1998)
Bäck, T., Fogel, D.B., Michalewicz, Z.: Handbook of Evolutionary Computation. Oxford University Press, New York (1997)
Burke, E.K., Cowling, P.I., Keuthen, R.: Effective local and guided variable neighborhood search methods for the asymmetric travelling salesman problem. In: Boers, E., et al. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 203–212. Springer, Heidelberg (2001)
Chen, S., Talukdar, S., Sadeh, N.: Job-shop-scheduling by a team of asynchronous agents. In: IJCAI 1993 Workshop on Knowledge-Based Production, Scheduling and Control, Chambery, France (1993)
Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack problem. Journal of Heuristics 4, 63–86 (1998)
Clements, D., Crawford, J., Joslin, D., Nemhauser, G., Puttlitz, M., Savelsbergh, M.: Heuristic optimization: A hybrid AI/OR approach (In conjunction with the Third International Conference on Principles and Practice of Constraint Programming (CP97)). In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, Springer, Heidelberg (1997)
Congram, R.K.: Polynomially Searchable Exponential Neighbourhoods for Sequencing Problems in Combinatorial Optimisation. PhD thesis, University of Southampton, Faculty of Mathematical Studies, UK (2000)
Cotta, C., Troya, J.M.: Embedding branch and bound within evolutionary algorithms. Applied Intelligence 18, 137–153 (2003)
Danna, E., Rothberg, E., Le Pape, C.: Exploring relaxation induced neighbourhoods to improve MIP solutions. Technical report, ILOG (2003)
Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1963)
Denzinger, J., Offermann, T.: On cooperation between evolutionary algorithms and other search paradigms. In: Proceedings of the 1999 Congress on Evolutionary Computation (CEC), IEEE Press, Los Alamitos (1999)
Dumitrescu, I., Stuetzle, T.: Combinations of local search and exact algorithms. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 211–223. Springer, Heidelberg (2003)
Filho, G.R., Lorena, L.A.N.: Constructive genetic algorithm and column generation: an application to graph coloring. In: Proceedings of APORS 2000 - The Fifth Conference of the Association of Asian-Pacific Operations Research Societies within IFORS (2000)
Fischetti, M., Lodi, A.: Local Branching. Mathematical Programming Series B 98, 23–47 (2003)
French, A.P., Robinson, A.C., Wilson, J.M.: Using a hybrid genetic-algorithm/branch and bound approach to solve feasibility and optimization integer programming problems. Journal of Heuristics 7, 551–564 (2001)
Glover, F., Kochenberger, G.: Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 57. Kluwer Academic Publishers, Dordrecht (2003)
Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht (1997)
Glover, F., Laguna, M., Martí, R.: Fundamentals of scatter search and path relinking. Control and Cybernetics 39(3), 653–684 (2000)
Hansen, P., Mladenović, N.: An introduction to variable neighborhood search. In: Voß, S., Martello, S., Osman, I., Roucairol, C. (eds.) Meta-heuristics: advances and trends in local search paradigms for optimization, pp. 433–438. Kluwer Academic Publishers, Dordrecht (1999)
Kirkpatrick, S., Gellat, C., Vecchi, M.: Optimization by simulated annealing. Science 220, 671–680 (1983)
Klau, G., Ljubić, I., Moser, A., Mutzel, P., Neuner, P., Pferschy, U., Raidl, G., Weiskircher, R.: Combining a memetic algorithm with integer programming to solve the prize-collecting Steiner tree problem. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1304–1315. Springer, Heidelberg (2004)
Kostikas, K., Fragakis, C.: Genetic programming applied to mixed integer programming. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 113–124. Springer, Heidelberg (2004)
Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (2001)
Lin, A.Z.-Z., Bean, J., White, I.C.C.: A hybrid genetic/optimization algorithm for finite horizon partially observed markov decision processes. Journal on Computing 16(1), 27–38 (2004)
Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search. In: Glover and Kochenberger [17], pp. 321–353
Marino, A., Prügel-Bennett, A., Glass, C.A.: Improving graph colouring with linear programming and genetic algorithms. In: Proceedings of EUROGEN 1999, Jyväskyiä, Finland, pp. 113–118 (1999)
Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In: Glover and Kochenberger [17], pp. 105–144.
Nagar, A., Heragu, S.S., Haddock, J.: A meta-heuristic algorithm for a bi-criteria scheduling problem. Annals of Operations Research 63, 397–414 (1995)
Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. John Wiley & Sons, Chichester (1988)
Plateau, A., Tachat, D., Tolla, P.: A hybrid search combining interior point methods and metaheuristics for 0-1 programming. International Transactions in Operational Research 9, 731–746 (2002)
Puchinger, J., Raidl, G.R.: An evolutionary algorithm for column generation in integer programming: an effective approach for 2D bin packing. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 642–651. Springer, Heidelberg (2004)
Puchinger, J., Raidl, G.R.: Models and algorithms for three-stage two-dimensional bin packing. Technical Report TR 186–1–04–04, Institute of Computer Graphics and Algorithms, Vienna University of Technology, submitted to the European Journal of Operations Research (2004)
Puchinger, J., Raidl, G.R., Koller, G.: Solving a real-world glass cutting problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004. LNCS, vol. 3004, pp. 162–173. Springer, Heidelberg (2004)
Raidl, G.R.: An improved genetic algorithm for the multiconstrained 0–1 knapsack problem. In: Fogel, D.B. (ed.) Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pp. 207–211. IEEE Press, Los Alamitos (1998)
Raidl, G.R., Feltl, H.: An improved hybrid genetic algorithm for the generalized assignment problem. In: Haddadd, H.M., others (eds.) Proceedings of the 2003 ACM Symposium on Applied Computing, pp. 990–995. ACM Press, New York (2004)
Staggemeier, A.T., Clark, A.R., Aickelin, U., Smith, J.: A hybrid genetic algorithm to solve a lot-sizing and scheduling problem. In: Proceedings of the 16th triannual Conference of the International Federation of Operational Research Societies, Edinburgh, U.K. (2002)
Talukdar, S., Baeretzen, L., Gove, A., de Souza, P.: Asynchronous teams: Cooperation schemes for autonomous agents. Journal of Heuristics 4, 295–321 (1998)
Talukdar, S., Murty, S., Akkiraju, R.: Asynchronous teams. In: Glover and Kochenberger [17], pp. 537–556.
Tamura, H., Hirahara, A., Hatono, I., Umano, M.: An approximate solution method for combinatorial optimisation. Transactions of the Society of Instrument and Control Engineers 130, 329–336 (1994)
Thompson, P., Orlin, J.: The theory of cycle transfers. Technical Report OR-200-89, MIT Operations Research Center, Boston, MA (1989)
Thompson, P., Psaraftis, H.: Cycle transfer algorithm for multivehicle routing and scheduling problems. Operations Research 41, 935–946 (1993)
Vasquez, M., Hao, J.-K.: A hybrid approach for the 0–1 multidimensional knapsack problem. In: Proceedings of the International Joint Conference on Artificial Intelligence 2001, pp. 328–333 (2001)
Woodruff, D.L.: A chunking based selection strategy for integrating meta-heuristics with branch and bound. In: Voss, S., et al. (eds.) Metaheuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 499–511. Kluwer Academic Publishers, Dordrecht (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Puchinger, J., Raidl, G.R. (2005). Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and Classification. In: Mira, J., Álvarez, J.R. (eds) Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach. IWINAC 2005. Lecture Notes in Computer Science, vol 3562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11499305_5
Download citation
DOI: https://doi.org/10.1007/11499305_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26319-7
Online ISBN: 978-3-540-31673-2
eBook Packages: Computer ScienceComputer Science (R0)