Abstract
An important assessment in patients with ischemic heart disease is whether myocardial contractility may improve after treatment. The prediction of myocardial contractility improvement is generally performed under physical or pharmalogical stress conditions. In this paper, we present a technique to build a statistical model of healthy myocardial contraction using independent component analysis. The model is used to detect regions with abnormal contraction in patients both during rest and stress.
This work is supported by the Dutch Science Foundation (NWO), under an innovational research incentive grant, vernieuwingsimpuls 2001. This work was also supported in part by a grant from Fundación MAPFRE Medicina and grants TIC2002-04495-C02 from the MEyC, and FIS-PI040676 and G03/185 from ISCIII. The work of A.F. Frangi was supported in part by a Ramon y Cajal Research Fellowship from the Spanish MEyC.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Underwood, S.R., Bax, J.J., et al.: Imaging techniques for the assessment of myocardial hibernation. European Heart Journal 25, 815–836 (2004)
van der Wall, E.E., Vliegen, H.W., et al.: Magnetic Resonance Imaging in Coro- nary Artery Disease. Circulation 92, 2723–2739 (1995)
van der Geest, R.J., Reiber, J.H.: Quantification in Cardiac MRI. Journal of Magnetic Resonance Imaging 10, 602–608 (1999)
Nagel, E., Fleck, E.: FunctionalMRI in Ischemic Heart Disease Based on Detection of Contraction Abnormalities. Journal of Magnetic Resonance Imaging 10, 411–417 (1999)
Baer, F., Voth, E., et al.: Gradient-echo magnetic resonance imaging during incremental dobutamine infusion for the localization of coronary artery stenoses. European Heart Journal 15, 218–225 (1994)
Suinesiaputra, A., Üzümcü, M., Frangi, A., Reiber, J., Lelieveldt, B.: Detecting Regional Abnormal Cardiac Contraction in Short-Axis MR Images using Independent Component Analysis. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 737–744. Springer, Heidelberg (2004)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, Inc., Chichester (2001)
Akaho, S.: Conditionally Independent Component Analysis for Supervised Feature Extraction. Neurocomputing 49, 139–150 (2002)
Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face Recognition by Independent Component Analysis. IEEE Trans. on Neural Network 13, 1450–1464 (2002)
Lee, T.W., Lewicki, M.S.: Unsupervised Image Classification, Segmentation, and Enhancement Using ICA Mixture Models. IEEE Trans. on Image Processing 11, 270–279 (2002)
Hyvärinen, A.: Survey on Independent Component Analysis. Neural Computing Surveys 2, 94–128 (1999)
Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. John Wiley & Sons, Chichester (2002)
van Rugge, F.P., van der Wall, E.E., et al.: Magnetic Resonance Imaging During Dobutamine Stress for Detection and Localization of Coronary Artery Disease. Circulation 90, 127–138 (1994)
Stögbauer, H., Andrzejak, R.G., Kraskov, A., Grassberger, P.: Reliability of ICA Estimates with Mutual Information. In: Puntonet, C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 209–216. Springer, Heidelberg (2004)
Cichocki, A., Karhunen, J., et al.: Neural Networks for Blind Separation with Unknown Number of Sources. Neurocomputing 24, 55–93 (1999)
Roberts, S.J.: Independent Component Analysis: Source Assessment & Separation, a Bayesian Approach. IEEE Proceedings - Vision, Image & Signal Processing 3, 149–154 (1998)
Himberg, J., Hyvärinen, A., Esposito, F.: Validating the Independent Components of Neuroimaging Time-Series via Clustering and Visualization. NeuroImage 22, 1214–1222 (2004)
Bressan, M., Vitrià , J.: Independent Modes of Variation in Point Distribution Models. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 123–134. Springer, Heidelberg (2001)
Silverman, B.: Density Estimation for Statistics and Data Analysis. In: Monographs on Statistics and Applied Probability. Chapman and Hall, London (1986)
Wand, M., Jones, M.C.: Kernel Smoothing. Chapman and Hall, Boca Raton (1995)
Cerqueira, M.D., Weissman, N.J., et al.: Standardized Myocardial Segmenta- tion and Nomenclature for Tomographic Imaging of the Heart: A Statement for Healthcare Professionals From the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105, 539–542 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Suinesiaputra, A., Frangi, A.F., Lamb, H.J., Reiber, J.H.C., Lelieveldt, B.P.F. (2005). Automatic Prediction of Myocardial Contractility Improvement in Stress MRI Using Shape Morphometrics with Independent Component Analysis. In: Christensen, G.E., Sonka, M. (eds) Information Processing in Medical Imaging. IPMI 2005. Lecture Notes in Computer Science, vol 3565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11505730_27
Download citation
DOI: https://doi.org/10.1007/11505730_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26545-0
Online ISBN: 978-3-540-31676-3
eBook Packages: Computer ScienceComputer Science (R0)