Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automatic Prediction of Myocardial Contractility Improvement in Stress MRI Using Shape Morphometrics with Independent Component Analysis

  • Conference paper
Information Processing in Medical Imaging (IPMI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3565))

  • 2438 Accesses

Abstract

An important assessment in patients with ischemic heart disease is whether myocardial contractility may improve after treatment. The prediction of myocardial contractility improvement is generally performed under physical or pharmalogical stress conditions. In this paper, we present a technique to build a statistical model of healthy myocardial contraction using independent component analysis. The model is used to detect regions with abnormal contraction in patients both during rest and stress.

This work is supported by the Dutch Science Foundation (NWO), under an innovational research incentive grant, vernieuwingsimpuls 2001. This work was also supported in part by a grant from Fundación MAPFRE Medicina and grants TIC2002-04495-C02 from the MEyC, and FIS-PI040676 and G03/185 from ISCIII. The work of A.F. Frangi was supported in part by a Ramon y Cajal Research Fellowship from the Spanish MEyC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Underwood, S.R., Bax, J.J., et al.: Imaging techniques for the assessment of myocardial hibernation. European Heart Journal 25, 815–836 (2004)

    Article  Google Scholar 

  2. van der Wall, E.E., Vliegen, H.W., et al.: Magnetic Resonance Imaging in Coro- nary Artery Disease. Circulation 92, 2723–2739 (1995)

    Google Scholar 

  3. van der Geest, R.J., Reiber, J.H.: Quantification in Cardiac MRI. Journal of Magnetic Resonance Imaging 10, 602–608 (1999)

    Article  Google Scholar 

  4. Nagel, E., Fleck, E.: FunctionalMRI in Ischemic Heart Disease Based on Detection of Contraction Abnormalities. Journal of Magnetic Resonance Imaging 10, 411–417 (1999)

    Article  Google Scholar 

  5. Baer, F., Voth, E., et al.: Gradient-echo magnetic resonance imaging during incremental dobutamine infusion for the localization of coronary artery stenoses. European Heart Journal 15, 218–225 (1994)

    Google Scholar 

  6. Suinesiaputra, A., Üzümcü, M., Frangi, A., Reiber, J., Lelieveldt, B.: Detecting Regional Abnormal Cardiac Contraction in Short-Axis MR Images using Independent Component Analysis. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 737–744. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, Inc., Chichester (2001)

    Book  Google Scholar 

  8. Akaho, S.: Conditionally Independent Component Analysis for Supervised Feature Extraction. Neurocomputing 49, 139–150 (2002)

    Article  MATH  Google Scholar 

  9. Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face Recognition by Independent Component Analysis. IEEE Trans. on Neural Network 13, 1450–1464 (2002)

    Article  Google Scholar 

  10. Lee, T.W., Lewicki, M.S.: Unsupervised Image Classification, Segmentation, and Enhancement Using ICA Mixture Models. IEEE Trans. on Image Processing 11, 270–279 (2002)

    Article  Google Scholar 

  11. Hyvärinen, A.: Survey on Independent Component Analysis. Neural Computing Surveys 2, 94–128 (1999)

    Google Scholar 

  12. Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. John Wiley & Sons, Chichester (2002)

    Google Scholar 

  13. van Rugge, F.P., van der Wall, E.E., et al.: Magnetic Resonance Imaging During Dobutamine Stress for Detection and Localization of Coronary Artery Disease. Circulation 90, 127–138 (1994)

    Google Scholar 

  14. Stögbauer, H., Andrzejak, R.G., Kraskov, A., Grassberger, P.: Reliability of ICA Estimates with Mutual Information. In: Puntonet, C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 209–216. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Cichocki, A., Karhunen, J., et al.: Neural Networks for Blind Separation with Unknown Number of Sources. Neurocomputing 24, 55–93 (1999)

    Article  MATH  Google Scholar 

  16. Roberts, S.J.: Independent Component Analysis: Source Assessment & Separation, a Bayesian Approach. IEEE Proceedings - Vision, Image & Signal Processing 3, 149–154 (1998)

    Article  Google Scholar 

  17. Himberg, J., Hyvärinen, A., Esposito, F.: Validating the Independent Components of Neuroimaging Time-Series via Clustering and Visualization. NeuroImage 22, 1214–1222 (2004)

    Article  Google Scholar 

  18. Bressan, M., Vitrià, J.: Independent Modes of Variation in Point Distribution Models. In: Arcelli, C., Cordella, L.P., Sanniti di Baja, G. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 123–134. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Silverman, B.: Density Estimation for Statistics and Data Analysis. In: Monographs on Statistics and Applied Probability. Chapman and Hall, London (1986)

    Google Scholar 

  20. Wand, M., Jones, M.C.: Kernel Smoothing. Chapman and Hall, Boca Raton (1995)

    MATH  Google Scholar 

  21. Cerqueira, M.D., Weissman, N.J., et al.: Standardized Myocardial Segmenta- tion and Nomenclature for Tomographic Imaging of the Heart: A Statement for Healthcare Professionals From the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105, 539–542 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suinesiaputra, A., Frangi, A.F., Lamb, H.J., Reiber, J.H.C., Lelieveldt, B.P.F. (2005). Automatic Prediction of Myocardial Contractility Improvement in Stress MRI Using Shape Morphometrics with Independent Component Analysis. In: Christensen, G.E., Sonka, M. (eds) Information Processing in Medical Imaging. IPMI 2005. Lecture Notes in Computer Science, vol 3565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11505730_27

Download citation

  • DOI: https://doi.org/10.1007/11505730_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26545-0

  • Online ISBN: 978-3-540-31676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics