Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Unified Statistical Approach to Cortical Thickness Analysis

  • Conference paper
Information Processing in Medical Imaging (IPMI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3565))

  • 2505 Accesses

Abstract

This paper presents a unified image processing and analysis framework for cortical thickness in characterizing a clinical population. The emphasis is placed on the development of data smoothing and analysis framework. The human brain cortex is a highly convoluted surface. Due to the convoluted non-Euclidean surface geometry, data smoothing and analysis on the cortex are inherently difficult. When measurements lie on a curved surface, it is natural to assign kernel smoothing weights based on the geodesic distance along the surface rather than the Euclidean distance. We present a new data smoothing framework that address this problem implicitly without actually computing the geodesic distance and present its statistical properties. Afterwards, the statistical inference is based on the random field theory based multiple comparison correction. As an illustration, we have applied the method in detecting the regions of abnormal cortical thickness in 16 high functioning autistic children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrade, A., Kherif, J.F., Mangin, K.J.W., Paradis, A., Simon, O., Dehaene, S., Le Bihan, D., Poline, J.-B.: Detection of fmri activation using cortical surface mapping. Human Brain Mapping 12, 79–93 (2001)

    Article  Google Scholar 

  2. Berline, N., Getzler, E., Vergne, M.: Heat kernels and dirac operators. Springer, Heidelberg (1991)

    Google Scholar 

  3. Cachia, A., Mangin, J.-F., Riviére, D., Papadopoulos-Orfanos, D., Kherif, F., Bloch, I., Régis, J.: A generic framework for parcellation of the cortical surface into gyri using geodesic voronoï diagrams. Image Analysis 7, 403–416 (2003)

    Article  Google Scholar 

  4. Chaudhuri, P., Marron, J.S.: Scale space view of curve estimation. The Annals of Statistics 28, 408–428 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chung, M.K., Robbins, S., Davidson, R.J., Alexander, A.L., Dalton, K.M., Evans, A.C.: Cortical thickness analysis in autism with heat kernel smoothing. NeuroImage (2005) (in press)

    Google Scholar 

  6. Chung, M.K., Taylor, J.: Diffusion smoothing on brain surface via finite element method. In: Proceedings of IEEE International Symposium on Biomedical Imaging, ISBI (2004)

    Google Scholar 

  7. Chung, M.K., Worsley, K.J., Robbins, S., Evans, A.C.: Tensor-based brain surface modeling and analysis. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. I, pp. 467–473 (2003)

    Google Scholar 

  8. Chung, M.K., Worsley, K.J., Robbins, S., Paus, T., Taylor, J.N., Giedd, J., Rapoport, J.L., Evans, A.C.: Deformation-based surface morphometry applied to gray matter deformation. NeuroImage 18, 198–213 (2003)

    Article  Google Scholar 

  9. Dale, A.M., Fischl, B.: Cortical surface-based analysis i. segmentation and surface reconstruction. NeuroImage 9, 179–194 (1999)

    Article  Google Scholar 

  10. Davatzikos, C., Bryan, R.N.: Using a deformable surface model to obtain a shape representation of the cortex. In: Proceedings of the IEEE International Conference on Computer Vision (1995)

    Google Scholar 

  11. Jones, S.E., Buchbinder, B.R., Aharon, I.: Three-dimensional mapping of cortical thickness using laplace’s equation. Human Brain Mapping 11, 12–32 (2000)

    Article  Google Scholar 

  12. Joshi, S.C., Wang, J., Miller, M.I., Van Essen, D.C., Grenander, U.: On the differential geometry of the cortical surface. Vision Geometry IV, 304–311 (1995)

    Google Scholar 

  13. Kollakian, K.: Performance analysis of automatic techniques for tissue classification in magnetic resonance images of the human brain. Technical Report Master’s thesis, Concordia University, Montreal, Quebec, Canada (1996)

    Google Scholar 

  14. MacDonald, J.D., Kabani, N., Avis, D., Evans, A.C.: Automated 3-d extraction of inner and outer surfaces of cerebral cortex from mri. NeuroImage 12, 340–356 (2000)

    Article  Google Scholar 

  15. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Analysis and Machine Intelligence 12, 629–639 (1990)

    Article  Google Scholar 

  16. Robbins, S.M.: Anatomical standardization of the human brain in euclidean 3-space and on the cortical 2-manifold. Technical Report PhD thesis, School of Computer Science, McGill University, Montreal, Quebec, Canada (2003)

    Google Scholar 

  17. Rosenberg, S.: The Laplacian on a Riemannian Manifold. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  18. Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in mri data. IEEE Transactions on Medical Imaging 17, 87–97 (1988)

    Article  Google Scholar 

  19. Sochen, N., Kimmel, R., Malladi, R.: A general framework for low level vision. IEEE Transactions on Image Processing 7, 310–318 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Thompson, P.M., Toga, A.W.: A surface-based technique for warping 3-dimensional images of the brain. IEEE Transactions on Medical Imaging 15, 1–16 (1996)

    Article  Google Scholar 

  21. Wahba, G.: Spline models for observational data. SIAM, Philadelphia (1990)

    MATH  Google Scholar 

  22. Wang, F.-Y.: Sharp explict lower bounds of heat kernels. Annals of Probability 24, 1995–2006 (1997)

    Article  Google Scholar 

  23. Worsley, K.J.: Local maxima and the expected euler characteristic of excursion sets of χ2, f and t fields. Advances in Applied Probability 26, 13–42 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Worsley, K.J., Taylor, J.E., Tomaiuolo, F., Lerch, J.: Unified univariate and multivariate random field theory. NeuroImage (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chung, M.K., Robbins, S., Evans, A.C. (2005). Unified Statistical Approach to Cortical Thickness Analysis. In: Christensen, G.E., Sonka, M. (eds) Information Processing in Medical Imaging. IPMI 2005. Lecture Notes in Computer Science, vol 3565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11505730_52

Download citation

  • DOI: https://doi.org/10.1007/11505730_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26545-0

  • Online ISBN: 978-3-540-31676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics