Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Application of Mixture Models to Detect Differentially Expressed Genes

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2005 (IDEAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3578))

Abstract

An important and common problem in microarray experiments is the detection of genes that are differentially expressed in a given number of classes. As this problem concerns the selection of significant genes from a large pool of candidate genes, it needs to be carried out within the framework of multiple hypothesis testing. In this paper, we focus on the use of mixture models to handle the multiplicity issue. With this approach, a measure of the local FDR (false discovery rate) is provided for each gene. An attractive feature of the mixture model approach is that it provides a framework for the estimation of the prior probability that a gene is not differentially expressed, and this probability can subsequently be used in forming a decision rule. The rule can also be formed to take the false negative rate into account. We apply this approach to a well-known publicly available data set on breast cancer, and discuss our findings with reference to other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allison, D.B., Gadbury, G.L., Heo, M., Fernandez, J.R., Lee, C.-K., Prolla, T.A., Weindruch, R.: A mixture model approach for the analysis of microarray gene expression data. Computational Statistics and Data Analysis 39, 1–20 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Benjamini, Y., Hochberg, Y.: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journalof the RoyalStatistical Society B 57, 289–300 (1995)

    MATH  MathSciNet  Google Scholar 

  • Broet, P., Richardson, S., Radvanyi, F.: Bayesian hierarchical model for identifying changes in gene expression from microarray experiments. Journal of Computational Biology 9, 671–683 (2002)

    Article  Google Scholar 

  • Broet, P., Lewin, A., Richardson, S., Dalmasso, C., Magdelenat, H.: A mixture model-based strategy for selecting sets of genes in multiclass response microar-ray experiments. Bioinformatics 20, 2562–2571 (2004)

    Article  Google Scholar 

  • Efron, B., Tibshirani, R., Storey, J.D., Tusher, V.: Empirical Bayes analysis of a microarray experiment. Journal of the American Statistical Association 96, 1151–1160 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Efron, B., Tibshirani, R.: Empirical Bayes methods and false discovery rates for microarrays. Genetic Epidemiology 23, 70–86 (2002)

    Article  Google Scholar 

  • Genovese, C.R., Wasserman, L.: Operating Characteristics and Extensions of the False Discovery Rate Procedure. Journal of the Royal Statistical Society B 64, 499–517 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Hedenfalk, I., Duggan, D., Chen, Y.D., Radmacher, M., Bittner, M., Simon, R., Meltzer, P., Gusterson, B., Esteller, M., Kallioniemi, O.P., et al.: Gene-expression profiles in hereditary breast cancer. The New England Journal of Medicine 344, 539–548 (2001)

    Article  Google Scholar 

  • Lee, M.-L.T., Kuo, F.C., Whitmore, G.A., Sklar, J.: Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. Proceedings of the National Academy of Sciences USA 97, 9834–9838 (2000)

    Article  MATH  Google Scholar 

  • McLachlan, G.J., Do, K.A., Ambroise, C.: Analyzing Microarray Gene Expression Data. Wiley, New York (2004)

    Book  MATH  Google Scholar 

  • Pan, W.: A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments. Bioinformatics 18, 546–554 (2002)

    Article  Google Scholar 

  • Pan, W., Lin, J., Le, C.T.: A mixture model approach to detecting diferen-tially expressed genes with microarray data. Functional and Integrative Genomics 3, 117–124 (2003)

    Article  Google Scholar 

  • Storey, J.D., Tibshirani, R.: Statistical significance for genome-wide studies. Proceedings of the National Academy of Sciences USA 100, 9440–9445 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Storey, J.: The positive false discovery rate: a Bayesian interpretation and the q-value. Annals of Statistics 31, 2013–2035 (2004)

    Article  MathSciNet  Google Scholar 

  • Tusher, V.G., Tibshirani, R., Chu, G.: Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences USA 98, 5116–5121 (2001)

    Article  MATH  Google Scholar 

  • Wit, E., McClure, J.: Statistics for Microarrays: Design, Analysis and Inference. Wiley, Chichester (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jones, L.BT., Bean, R., McLachlan, G., Zhu, J. (2005). Application of Mixture Models to Detect Differentially Expressed Genes. In: Gallagher, M., Hogan, J.P., Maire, F. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2005. IDEAL 2005. Lecture Notes in Computer Science, vol 3578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11508069_55

Download citation

  • DOI: https://doi.org/10.1007/11508069_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26972-4

  • Online ISBN: 978-3-540-31693-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics