Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Protein Fold Recognition Using Neural Networks and Support Vector Machines

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2005 (IDEAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3578))

  • 1340 Accesses

Abstract

In this paper, a new fold recognition model with mixed environment-specific substitution mapping (called MESSM) is proposed with three key features: 1) a structurally-derived substitution score is generated using neural networks; 2) a mixed environment-specific substitution mapping is developed by combing the structural-derived substitution score with sequence profile from well-developed sequence substitution matrices; 3) a support vector machine is employed to measure the significance of the sequence-structure alignment. Tested on two benchmark problems, the MESSM model shows comparable performance to those more computational intensive, energy potential based fold recognition models. The results also demonstrate that the new fold recognition model with mixed substitution mapping has a better performance than the one with either structure or sequence profile only. The MESSM model presents a new way to develop an efficient tool for protein fold recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Henikoff, S.: Amino-acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89(22), 10915–10919 (1992)

    Article  Google Scholar 

  2. Shi, J., Blundell, T.L., Mizuguchi, K.: FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure- dependent gap penalties. J. Mol. Biol. 310, 243–257 (2001)

    Article  Google Scholar 

  3. Kelley, L.A., MacCallum, R.M., Sternberg, M.J.: Enhanced Genome Annotation using Structural Profiles in the Program 3D-PSSM. J. Mol. Biol. 299(2), 501–522 (2000)

    Article  Google Scholar 

  4. Baldi, P., Brunak, S.: Bioinformaics: The Machine Learning Approach. MIT Press, Cambridge (2001)

    Google Scholar 

  5. Wang, L.P. (ed.): Support Vector Machines: Theory and Application. Springer, Heidelberg (2005)

    Google Scholar 

  6. Ding, C., Dubchak, I.: Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 17, 349–358 (2001)

    Article  Google Scholar 

  7. Bologna, G., Appel, R.D.: A comparison study on protein fold recognition. In: Proceedings of the 9th International Conference on Neural Information Processing (ICONIP 2002), vol. 5, pp. 2492–2496 (2002)

    Google Scholar 

  8. Jiang, N., Wu, X., Mitchell, I.: Protein threading with residue-environment matching by artificial neural networks. In: Proceeding of the 2004 ACM Symposium on Applied Computing, p. 209 (2004)

    Google Scholar 

  9. Lo Conte, L., Brenner, S.E., Hubbard, T.J.P., et al.: SCOP database in 2002: refinements accommodate structural genomics. Nucl. Acids. Res. 30(1), 264–267 (2002)

    Article  Google Scholar 

  10. Shih, E.S.C., Hwang, M.J.: Protein structure comparison by probability-based matching of secondary structure elements. Bioinformatics 19, 735–741 (2003)

    Article  Google Scholar 

  11. Fischer, D., Elofsson, A., Rice, D.W., et al.: Assessing the performance of fold recognition methods by means of a comprehensive benchmark. In: Proceedings of the Pacific Symposium on Biocomputing, pp. 300–318 (1996)

    Google Scholar 

  12. Bryant, S.H., Altschul, S.F.: Statistics of sequence-structure threading. Current Opinions in Structural Biology 5, 236–244 (1995)

    Article  Google Scholar 

  13. Jones, D.T.: GenTHREADER: An efficient and Reliable Protein Fold recognition Method for Genomic Sequences. J. Mol. Biol. 287, 797–815 (1999)

    Article  Google Scholar 

  14. Xu, Y., Xu, D., Olman, V.: A practical method for interpretation of threading scores: an application of neural networks. Statistical Sinica Special Issue on Bioinformatics 12, 159–177 (2002)

    MATH  MathSciNet  Google Scholar 

  15. Zhou, H., Zhou, Y.: Single-body residue-level knowledge-based energy score combined with sequence-profile and secondary structure information for fold recognition. Proteins 55, 1005–1013 (2004)

    Article  Google Scholar 

  16. Wallner, B., Fang, H., Ohlson, T., Frey-skott, J., Elofsson, A.: Using evolutionary information for query and target improves fold recognition. Proteins 54, 342–350 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiang, N., Wu, W.X., Mitchell, I. (2005). Protein Fold Recognition Using Neural Networks and Support Vector Machines. In: Gallagher, M., Hogan, J.P., Maire, F. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2005. IDEAL 2005. Lecture Notes in Computer Science, vol 3578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11508069_60

Download citation

  • DOI: https://doi.org/10.1007/11508069_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26972-4

  • Online ISBN: 978-3-540-31693-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics