Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Comparison of Simulated Annealing with a Simple Evolutionary Algorithm

  • Conference paper
Foundations of Genetic Algorithms (FOGA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3469))

Included in the following conference series:

Abstract

Evolutionary algorithms belong to the class of general randomized search heuristics. Theoretical investigations often concentrate on simple instances like the well-known (1+1) EA. This EA is very similar to simulated annealing, another general randomized search heuristic. These two algorithms are systematically compared under the perspective of the expected optimization time when optimizing pseudo-boolean functions. It is investigated how well the algorithmic similarities can be exploited to transfer analytical results from one algorithm to the other. Limitations of such an approach are illustrated by the presentation of example functions where the performance of the two algorithms differs in an extreme way. Furthermore, an attempt is made to characterize classes of functions where such a transfer of results is more successful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  2. Carson, T., Impagliazzo, R.: Hill-climbing finds random planted bisections. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), pp. 903–909 (2001)

    Google Scholar 

  3. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  4. Droste, S., Jansen, T., Wegener, I.: Dynamic parameter control in simple evolutionary algorithms. In: Martin, W.N., Spears, W.M. (eds.) Foundations of Genetic Algorithms 6 (FOGA 2000), pp. 275–294. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  5. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science 276, 51–81 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Garnier, J., Kallel, L., Schoenauer, M.: Rigorous hitting times for binary mutations. Evolutionary Computation 7(2), 173–203 (1999)

    Article  Google Scholar 

  7. Hart, W.E.: A theoretical comparison of evolutionary algorithms and simulated annealing. In: Proceedings of the Fifth Annual Conference on Evolutionary Programming, pp. 147–154 (1995)

    Google Scholar 

  8. Ingber, L., Rosen, B.: Genetic algorithms and very fast reannealing: a comparison. Mathematical and Computer Modeling 16, 87–100 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jansen, T., Wegener, I.: On the choice of the mutation probability for the (1+1) EA. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 89–98. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Jansen, T., Wegener, I.: On the analysis of evolutionary algorithms - a proof that crossover really can help. Algorithmica 34(1), 47–66 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jerrum, M.R., Sorkin, G.: Simulated annealing for graph bisection. In: Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS 1993), pp. 94–103. IEEE Press, Los Alamitos (1993)

    Google Scholar 

  12. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  13. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculation by fast computing machines. Journal of Chemical Physics 21, 1078–1092 (1953)

    Article  Google Scholar 

  14. Mühlenbein, H.: How genetic algorithms really work. Mutation and Hillclimbing. In: Männer, Manderick (eds.) Proceedings of the 2nd Parallel Problem Solving from Nature (PPSN II), pp. 15–25. North-Holland, Amsterdam (1992)

    Google Scholar 

  15. Prügel-Bennett, A.: When a genetic algorithm outperforms hill-climbing. Theoretical Computer Science 320(1), 135–153 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rudolph, G.: Convergence Properties of Evolutionary Algorithms. Dr.Kovač (1997)

    Google Scholar 

  17. Sorkin, G.B.: Efficient simulated annealing on fractal energy landscapes. Algorithmica 6, 346–418 (1991)

    Article  MathSciNet  Google Scholar 

  18. Ulder, N.L.J., Aarts, E.H.L., Bandelt, H.-J., van Laarhoven, P.J.M., Pesch, E.: Genetic local search algorithms for the traveling salesman problem. In: First International Conference on Parallel Problem Solving from Nature (PPSN I), pp. 109–116 (1994)

    Google Scholar 

  19. Wegener (2004): Simulated annealing beats Metropolis in combinatorial optimization. Technical Report SFB 531, CI 181/04. University of Dortmund, Germany.

    Google Scholar 

  20. Wegener, I., Witt, C.: On the optimization of monotone polynomials by the (1+1) EA and randomized local search. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 622–633. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jansen, T. (2005). A Comparison of Simulated Annealing with a Simple Evolutionary Algorithm. In: Wright, A.H., Vose, M.D., De Jong, K.A., Schmitt, L.M. (eds) Foundations of Genetic Algorithms. FOGA 2005. Lecture Notes in Computer Science, vol 3469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11513575_3

Download citation

  • DOI: https://doi.org/10.1007/11513575_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27237-3

  • Online ISBN: 978-3-540-32035-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics