Abstract
Evolutionary algorithms belong to the class of general randomized search heuristics. Theoretical investigations often concentrate on simple instances like the well-known (1+1) EA. This EA is very similar to simulated annealing, another general randomized search heuristic. These two algorithms are systematically compared under the perspective of the expected optimization time when optimizing pseudo-boolean functions. It is investigated how well the algorithmic similarities can be exploited to transfer analytical results from one algorithm to the other. Limitations of such an approach are illustrated by the presentation of example functions where the performance of the two algorithms differs in an extreme way. Furthermore, an attempt is made to characterize classes of functions where such a transfer of results is more successful.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, Oxford (1996)
Carson, T., Impagliazzo, R.: Hill-climbing finds random planted bisections. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), pp. 903–909 (2001)
Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2001)
Droste, S., Jansen, T., Wegener, I.: Dynamic parameter control in simple evolutionary algorithms. In: Martin, W.N., Spears, W.M. (eds.) Foundations of Genetic Algorithms 6 (FOGA 2000), pp. 275–294. Morgan Kaufmann, San Francisco (2000)
Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science 276, 51–81 (2002)
Garnier, J., Kallel, L., Schoenauer, M.: Rigorous hitting times for binary mutations. Evolutionary Computation 7(2), 173–203 (1999)
Hart, W.E.: A theoretical comparison of evolutionary algorithms and simulated annealing. In: Proceedings of the Fifth Annual Conference on Evolutionary Programming, pp. 147–154 (1995)
Ingber, L., Rosen, B.: Genetic algorithms and very fast reannealing: a comparison. Mathematical and Computer Modeling 16, 87–100 (1992)
Jansen, T., Wegener, I.: On the choice of the mutation probability for the (1+1) EA. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 89–98. Springer, Heidelberg (2000)
Jansen, T., Wegener, I.: On the analysis of evolutionary algorithms - a proof that crossover really can help. Algorithmica 34(1), 47–66 (2002)
Jerrum, M.R., Sorkin, G.: Simulated annealing for graph bisection. In: Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS 1993), pp. 94–103. IEEE Press, Los Alamitos (1993)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculation by fast computing machines. Journal of Chemical Physics 21, 1078–1092 (1953)
Mühlenbein, H.: How genetic algorithms really work. Mutation and Hillclimbing. In: Männer, Manderick (eds.) Proceedings of the 2nd Parallel Problem Solving from Nature (PPSN II), pp. 15–25. North-Holland, Amsterdam (1992)
Prügel-Bennett, A.: When a genetic algorithm outperforms hill-climbing. Theoretical Computer Science 320(1), 135–153 (2004)
Rudolph, G.: Convergence Properties of Evolutionary Algorithms. Dr.Kovač (1997)
Sorkin, G.B.: Efficient simulated annealing on fractal energy landscapes. Algorithmica 6, 346–418 (1991)
Ulder, N.L.J., Aarts, E.H.L., Bandelt, H.-J., van Laarhoven, P.J.M., Pesch, E.: Genetic local search algorithms for the traveling salesman problem. In: First International Conference on Parallel Problem Solving from Nature (PPSN I), pp. 109–116 (1994)
Wegener (2004): Simulated annealing beats Metropolis in combinatorial optimization. Technical Report SFB 531, CI 181/04. University of Dortmund, Germany.
Wegener, I., Witt, C.: On the optimization of monotone polynomials by the (1+1) EA and randomized local search. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 622–633. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jansen, T. (2005). A Comparison of Simulated Annealing with a Simple Evolutionary Algorithm. In: Wright, A.H., Vose, M.D., De Jong, K.A., Schmitt, L.M. (eds) Foundations of Genetic Algorithms. FOGA 2005. Lecture Notes in Computer Science, vol 3469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11513575_3
Download citation
DOI: https://doi.org/10.1007/11513575_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27237-3
Online ISBN: 978-3-540-32035-7
eBook Packages: Computer ScienceComputer Science (R0)