Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Approximate Factorisation of Probability Trees

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3571))

Abstract

Bayesian networks are efficient tools for probabilistic reasoning over large sets of variables, due to the fact that the joint distribution factorises according to the structure of the network, which captures conditional independence relations among the variables. Beyond conditional independence, the concept of asymmetric (or context specific) independence makes possible the definition of even more efficient reasoning schemes, based on the representation of probability functions through probability trees. In this paper we investigate how it is possible to achieve a finer factorisation by decomposing the original factors for which some conditions hold. We also introduce the concept of approximate factorisation and apply this methodology to the Lazy-Penniless propagation algorithm.

This work has been supported by the Spanish Ministry of Science and Technology, projects TIC2001-2973-C05-01,02, TIN2004-06204-C03-01 and by FEDER funds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific independence in Bayesian networks. In: Horvitz, E., Jensen, F.V. (eds.) Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence, pp. 115–123. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  2. Cano, A., Moral, S., Salmerón, A.: Penniless propagation in join trees. International Journal of Intelligent Systems 15, 1027–1059 (2000)

    Article  MATH  Google Scholar 

  3. Cano, A., Moral, S., Salmerón, A.: Lazy evaluation in Penniless propagation over join trees. Networks 39, 175–185 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cooper, G.F.: The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence 42, 393–405 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dagum, P., Luby, M.: Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence 60, 141–153 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jensen, F.V., Lauritzen, S.L., Olesen, K.G.: Bayesian updating in causal probabilistic networks by local computation. Computational Statistics Quarterly 4, 269–282 (1990)

    MathSciNet  Google Scholar 

  7. Kullback, S., Leibler, R.: On information and sufficiency. Annals of Mathematical Statistics 22, 76–86 (1951)

    Article  MathSciNet  Google Scholar 

  8. Madsen, A.L., Jensen, F.V.: Lazy propagation: a junction tree inference algorithm based on lazy evaluation. Artificial Intelligence 113, 203–245 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Martínez, I., Moral, S., Rodríguez, C., Salmerón, A.: Factorisation of probability trees and its application to inference in Bayesian networks. In: Gámez, J.A., Salmerón, A. (eds.) Proceedings of the First European Workshop on Probabilistic Graphical Models, pp. 127–134 (2002)

    Google Scholar 

  10. Salmerón, A., Cano, A., Moral, S.: Importance sampling in Bayesian networks using probability trees. Computational Statistics and Data Analysis 34, 387–413 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Shenoy, P.P.: Binary join trees for computing marginals in the Shenoy-Shafer architecture. International Journal of Approximate Reasoning 17, 239–263 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martínez, I., Moral, S., Rodríguez, C., Salmerón, A. (2005). Approximate Factorisation of Probability Trees. In: Godo, L. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2005. Lecture Notes in Computer Science(), vol 3571. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11518655_6

Download citation

  • DOI: https://doi.org/10.1007/11518655_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27326-4

  • Online ISBN: 978-3-540-31888-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics