Abstract
Most of the decision procedures for symbolic analysis of protocols are limited to a fixed set of algebraic operators associated with a fixed intruder theory. Examples of such sets of operators comprise XOR, multiplication/exponentiation, abstract encryption/decryption. In this paper we give an algorithm for combining decision procedures for arbitrary intruder theories with disjoint sets of operators, provided that solvability of ordered intruder constraints, a slight generalization of intruder constraints, can be decided in each theory. This is the case for most of the intruder theories for which a decision procedure has been given. In particular our result allows us to decide trace-based security properties of protocols that employ any combination of the above mentioned operators with a bounded number of sessions.
Supported by IST-2001-39252 AVISPA, ACI SATIN, ACI-Jeune Chercheur JC9005.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abadi, M., Blanchet, B., Fournet, C.: Just Fast Keying in the Pi Calculus. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 340–354. Springer, Heidelberg (2004)
Amadio, R., Lugiez, D., Vanackère, V.: On the symbolic reduction of processes with cryptographic functions. Theor. Comput. Sci. 290(1), 695–740 (2003)
Baader, F., Schulz, K.U.: Unification in the union of disjoint equational theories. combining decision procedures. J. Symb. Comput. 21(2), 211–243 (1996)
Basin, D., Mödersheim, S., Viganò, L.: An On-The-Fly Model-Checker for Security Protocol Analysis. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808, pp. 253–270. Springer, Heidelberg (2003)
Boreale, M.: Symbolic trace analysis of cryptographic protocols. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 667–681. Springer, Heidelberg (2001)
Boreale, M., Buscemi, M.: Symbolic analysis of crypto-protocols based on modular exponentiation. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 269–278. Springer, Heidelberg (2003)
Borisov, N., Goldberg, I., Wagner, D.: Intercepting mobile communications: the insecurity of 802.11. In: Proceedings of MOBICOM 2001, pp. 180–189 (2001)
Chevalier, Y., Kuesters, R., Rusinowitch, M., Turuani, M.: An NP Decision Procedure for Protocol Insecurity with XOR. In: Proceedings of the Logic In Computer Science Conference, LICS 2003 (June 2003)
Chevalier, Y., Rusinowitch, M.: Combining intruder theories. Technical report, INRIA (2005), http://www.inria.fr/rrrt/rr-5495.html
Chevalier, Y., Vigneron, L.: A Tool for Lazy Verification of Security Protocols. In: Proceedings of the Automated Software Engineering Conference (ASE 2001). IEEE Computer Society Press, Los Alamitos (2001)
Comon-Lundh, H., Shmatikov, V.: Intruder Deductions, Constraint Solving and Insecurity Decision in Presence of Exclusive or. In: Proceedings of the Logic In Computer Science Conference, LICS 2003, pp. 271–280 (2003)
Delaune, S., Jacquemard, F.: A decision procedure for the verification of security protocols with explicit destructors. In: Proceedings of the 11th ACM Conference on Computer and Communications Security (CCS 2004), Washington, D.C., USA, pp. 278–287. ACM Press, New York (2004)
Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: Handbook of Theoretical Computer Science, vol. B, pp. 243–320. Elsevier, Amsterdam (1990)
Hsiang, J., Rusinowitch, M.: On word problems in equational theories. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 54–71. Springer, Heidelberg (1987)
Meadows, C., Narendran, P.: A unification algorithm for the group Diffie-Hellman protocol. In: Workshop on Issues in the Theory of Security (in conjunction with POPL 2002), Portland, Oregon, USA, pp. 14–15 (January 2002)
Millen, J., Shmatikov, V.: Constraint solving for bounded-process cryptographic protocol analysis. In: ACM Conference on Computer and Communications Security, pp. 166–175 (2001)
Millen, J., Shmatikov, V.: Symbolic protocol analysis with an abelian group operator or Diffie-Hellman exponentiation. Journal of Computer Security (2005)
Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions is NP-complete. In: Proceedings of CSFW 2001. IEEE, Los Alamitos (2001)
Schmidt-Schauß, M.: Unification in a combination of arbitrary disjoint equational theories. J. Symb. Comput. 8(1/2), 51–99 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chevalier, Y., Rusinowitch, M. (2005). Combining Intruder Theories. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds) Automata, Languages and Programming. ICALP 2005. Lecture Notes in Computer Science, vol 3580. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11523468_52
Download citation
DOI: https://doi.org/10.1007/11523468_52
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27580-0
Online ISBN: 978-3-540-31691-6
eBook Packages: Computer ScienceComputer Science (R0)