Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stability and Similarity of Link Analysis Ranking Algorithms

  • Conference paper
Automata, Languages and Programming (ICALP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3580))

Included in the following conference series:

Abstract

Recently, there has been a surge of research activity in the area of Link Analysis Ranking, where hyperlink structures are used to determine the relative authority of Web pages. One of the seminal works in this area is that of Kleinberg [15], who proposed the Hits algorithm. In this paper, we undertake a theoretical analysis of the properties of the Hits algorithm on a broad class of random graphs. Working within the framework of Borodin et al.[7], we prove that on this class (a) the Hits algorithm is stable with high probability, and (b) the Hits algorithm is similar to the InDegree heuristic that assigns to each node weight proportional to the number of incoming links. We demonstrate that our results go through for the case that the expected in-degrees of the graph follow a power-law distribution, a situation observed in the actual Web graph [9]. We also study experimentally the similarity between Hits and InDegree, and we investigate the general conditions under which the two algorithms are similar.

Partially supported by the EU under contract 001907 (DELIS) and 33555 (COSIN), and by the Italian MIUR under contract ALGO-NEXT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Achlioptas, D., McSherry, F.: Fast computation of low rank matrix approximations. In: ACM Symposium on Theory of Computing (STOC) (2001)

    Google Scholar 

  2. Adamic, L.A., Huberman, B.A.: Zipf’s law and the internet. Glottometrics 3, 143–150 (2002)

    Google Scholar 

  3. Aiello, W., Chung, F.R.K., Lu, L.: Random evolution in massive graphs. In: IEEE Symposium on Foundations of Computer Science, pp. 510–519 (2001)

    Google Scholar 

  4. Azar, Y., Fiat, A., Karlin, A., McSherry, F., Saia, J.: Spectral analysis of data. In: Proceedings of the 33rd Symposium on Theory of Computing (STOC 2001), Greece (2001)

    Google Scholar 

  5. Barabasi, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  6. Bianchini, M., Gori, M., Scarselli, F.: Pagerank: A circuital analysis. In: Proceedings of the Eleventh International World Wide Web (WWW) Conference (2002)

    Google Scholar 

  7. Borodin, A., Roberts, G.O., Rosenthal, J.S., Tsaparas, P.: Link Analysis Ranking: Algorithms, Theory, and Experiments. ACM Transactions on Internet Technology 05(1) (2005)

    Google Scholar 

  8. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. In: Proceedings of the 7th International World Wide Web Conference, Brisbane, Australia (1998)

    Google Scholar 

  9. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomikns, A., Wiener, W.: Graph structure in the Web. In: Proceedings of WWW9 (2000)

    Google Scholar 

  10. Chung, F., Lu, L.: Connected components in random graphs with given degree sequences. Annals of Combinatorics 6, 125–145 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. Internet Mathematics 1, 91–114 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chung, F., Lu, L., Vu, V.: Eigenvalues of random power law graphs. Annals of Combinatorics 7, 21–33 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Erdös, P., Rènyi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)

    MATH  Google Scholar 

  14. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, SODA (2003)

    Google Scholar 

  15. Kleinberg, J.: Authoritative sources in a hyperlinked environment. In: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 668–677 (1998)

    Google Scholar 

  16. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the web graph. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science (2000)

    Google Scholar 

  17. Lee, H.C., Borodin, A.: Perturbation of the hyperlinked environment. In: Proceedings of the Ninth International Computing and Combinatorics Conference (2003)

    Google Scholar 

  18. Lempel, R., Moran, S.: The stochastic approach for link-structure analysis (SALSA) and the TKC effect. In: Proceedings of the 9th International World Wide Web Conference (2000)

    Google Scholar 

  19. Lempel, R., Moran, S.: Rank stability and rank similarity of link-based web ranking algorithms in authority connected graphs. In: Second Workshop on Algorithms and Models for the Web-Graph, WAW 2003 (2003)

    Google Scholar 

  20. Mihail, M., Papadimitriou, C.H.: On the eigenvalue power law. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483, p. 254. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  22. Ng, A.Y., Zheng, A.X., Jordan, M.I.: Link analysis, eigenvectors, and stability. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI (2001)

    Google Scholar 

  23. Stewart, G.W., Sun, J.: Matrix Perturbation Theory. Academic Press, London (1990)

    MATH  Google Scholar 

  24. Zipf, G.K.: Human Behavior and the principle of least effort. Addison-Wesley, Reading (1949)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Donato, D., Leonardi, S., Tsaparas, P. (2005). Stability and Similarity of Link Analysis Ranking Algorithms. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds) Automata, Languages and Programming. ICALP 2005. Lecture Notes in Computer Science, vol 3580. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11523468_58

Download citation

  • DOI: https://doi.org/10.1007/11523468_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27580-0

  • Online ISBN: 978-3-540-31691-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics