Abstract
A logical view of formal concept analysis considers attributes of a formal context as unary predicates. In a first part, we propose an augmented definition that handles binary relations between objects. A Galois connection is defined on augmented contexts. It represents concept inheritance as usual, but also relations between concepts. As usual, labeling operators are also defined. In particular, concepts and relations are visible and labeled in a single structure. In a second part, we show how relations can be used for navigating in an augmented concept lattice. This part augments the theory of Logical Information Systems. An implementation is sketched, and first experimental results are presented.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Godin, R., Missaoui, R., April, A.: Experimental comparison of navigation in a galois lattice with conventional information retrieval methods. International Journal of Man-Machine Studies 38, 747–767 (1993)
Lindig, C.: Concept. In: Köhler, J., Giunchiglia, F., Green, C., Walther, C. (eds.) IJCAI 1995 Workshop on Formal Approaches to the Reuse of Plans, Proofs, and Programs, Montreal, Canada (1995)
Ferré, S., Ridoux, O.: A logical generalization of formal concept analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 371–384. Springer, Heidelberg (2000)
Ganter, B., Kuznetsov, S.: Formalizing hypotheses with concepts. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 342–356. Springer, Heidelberg (2000)
Ferré, S., Ridoux, O.: An introduction to logical information systems. Information Processing & Management 40, 383–419 (2004)
Wille, R.: Conceptual graphs and formal concept analysis. In: Delugach, H.S., Keeler, M.A., Searle, L., Lukose, D., Sowa, J.F. (eds.) ICCS 1997. LNCS, vol. 1257, pp. 290–303. Springer, Heidelberg (1997)
Sowa, J.F.: Conceptual structures. Information processing in man and machine. Addison-Wesley, Reading (1984)
Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: The complexity of concept languages. Information and Computation 134, 1–58 (1997)
Mineau, G., Stumme, G., Wille, R.: Conceptual structures represented by conceptual graphs and formal concept analysis. In: Tepfenhart, W.M., Cyre, W.R. (eds.) ICCS 1999. LNCS, vol. 1640, pp. 423–441. Springer, Heidelberg (1999)
Prediger, S., Stumme, G.: Theory-driven logical scaling. In: International Workshop on Description Logics, Sweden, vol. 22 (1999)
Baader, F., Sertkaya, B.: Applying formal concept analysis to description logics. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 261–286. Springer, Heidelberg (2004)
Ganter, B., Wille, R.: Formal Concept Analysis — Mathematical Foundations. Springer, Heidelberg (1999)
Padioleau, Y., Ridoux, O.: A logic file system. In: USENIX Annual Technical Conference, General Track, San Antonio, Texas, USA, USENIX, pp. 99–112 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ferré, S., Ridoux, O., Sigonneau, B. (2005). Arbitrary Relations in Formal Concept Analysis and Logical Information Systems. In: Dau, F., Mugnier, ML., Stumme, G. (eds) Conceptual Structures: Common Semantics for Sharing Knowledge. ICCS 2005. Lecture Notes in Computer Science(), vol 3596. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11524564_11
Download citation
DOI: https://doi.org/10.1007/11524564_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27783-5
Online ISBN: 978-3-540-31885-9
eBook Packages: Computer ScienceComputer Science (R0)