Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Effective Multi-dimensional Index Strategy for Cluster Architectures

  • Conference paper
Image and Video Retrieval (CIVR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3568))

Included in the following conference series:

  • 1171 Accesses

Abstract

Most modern image database systems employ content-based image re trieval techniques and various multi-dimensional indexing structures to speed up the query performance. While the first aspect ensures an intuitive re trieval for the user, the latter guarantees an efficient han dling of huge data amounts. How ever, beyond a system inherent threshold only the simultaneous paral lelisa tion of the indexing structure can improve the system’s performance. In such an ap proach one of the key factors is the de-clustering of the data. To tackle the high lighted issues, this pa per proposes an effective multi-dimensional in dex strat egy with de-clustering based on the vantage point tree with suitable simi lar ity measure for content-based re trieval. The conducted experiments show the effec tive and efficient behaviour for an actual image database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gong, Y.: Intelligent Image Databases, pp. 55–59. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  2. Castelli, V., Bergman, L.D.: Image Databases: Search and Retrieval of Digital Imagery, p. 263. John Wiley & Sons. Inc., Chichester (2002)

    Google Scholar 

  3. Wu, L., Bretschneider, T.: VP-EMD tree: An efficient indexing strategy for data with varying dimension and order. In: Proceedings of the International Conference on Imaging Science, Systems and Technology, pp. 421–426 (2004)

    Google Scholar 

  4. Pramanik, S., Li, J.: Fast approximate search algorithm for nearest neighbor queries in high dimensions. In: Proceedings of the IEEE International Conference on Data Engineering, p. 251 (1999)

    Google Scholar 

  5. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision, 99–121 (2000)

    Google Scholar 

  6. DeWitt, D.J., Gray, J.: Parallel Database Systems: The future of high performance database processing. Communications of the ACM 36(6), 85–98 (1992)

    Article  Google Scholar 

  7. Schnitzer, B., Leutenegger, S.T.: Master-Client R-trees: A new parallel R-tree architecture. In: Proceedings of the Conference on Scientific and Statistical Database Management, pp. 68–77 (1999)

    Google Scholar 

  8. Bretschneider, T., Kao, O.: Retrieval of multispectral satellite imagery on cluster architectures. In: Proceedings of the EuroPar. LNCS, pp. 342–346 (2002)

    Google Scholar 

  9. Bretschneider, T., Kao, O.: A retrieval system for remotely sensed imagery. In: Proceedings of the International Conference on Imaging Science, Systems and Technology, vol. 2, pp. 439–445 (2002)

    Google Scholar 

  10. Li, Y., Bretschneider, T.: Supervised content-based satellite image retrieval using piecewise defined signature similarities. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, vol. 2, pp. 734–736 (2003)

    Google Scholar 

  11. Chiueh, T.C.: Content-based image indexing. In: Proceedings of the International Conference on Very Large Data Bases, pp. 582–593 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, L., Bretschneider, T. (2005). An Effective Multi-dimensional Index Strategy for Cluster Architectures. In: Leow, WK., Lew, M.S., Chua, TS., Ma, WY., Chaisorn, L., Bakker, E.M. (eds) Image and Video Retrieval. CIVR 2005. Lecture Notes in Computer Science, vol 3568. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11526346_20

Download citation

  • DOI: https://doi.org/10.1007/11526346_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27858-0

  • Online ISBN: 978-3-540-31678-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics