Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Algebraic Approach to the Complexity of Generalized Conjunctive Queries

  • Conference paper
Theory and Applications of Satisfiability Testing (SAT 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3542))

Abstract

Conjunctive-query containment is considered as a fundamental problem in database query evaluation and optimization. Kolaitis and Vardi pointed out that constraint satisfaction and conjunctive query containment are essentially the same problem. We study the Boolean conjunctive queries under a more detailed scope, where we investigate their counting problem by means of the algebraic approach through Galois theory, taking advantage of Post’s lattice. We prove a trichotomy theorem for the generalized conjunctive query counting problem, showing this way that, contrary to the corresponding decision problems, constraint satisfaction and conjunctive-query containment differ for other computational goals. We also study the audit problem for conjunctive queries asking whether there exists a frozen variable in a given query. This problem is important in databases supporting statistical queries. We derive a dichotomy theorem for this audit problem that sheds more light on audit applicability within database systems.

Supported by ÉGIDE 05835SH, DAAD D/0205776 and DFG VO 630/5-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abiteboul, S., Hull, R., Vianu, V.: Foundation of databases. Addison-Wesley, Reading (1995)

    Google Scholar 

  2. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part I: Post’s lattice with applications to complexity theory. SIGACT News, Complexity Theory Column 42, 34(4), 38–52 (2003)

    Google Scholar 

  3. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part II: Constraint satisfaction problems. SIGACT News, Complexity Theory Column 43, 35(1), 22–35 (2004)

    Google Scholar 

  4. Creignou, N., Hermann, M.: On #P-completeness of some counting problems. Research report 2144, Institut de Recherche en Informatique et en Automatique (December 1993), http://www.lix.polytechnique.fr/~hermann/publications/satcount.ps.gz

  5. Creignou, N., Hermann, M.: Complexity of generalized satisfiability counting problems. Information and Computation 125(1), 1–12 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Constraint Satisfaction Problems. In: SIAM Monographs on Discrete Mathematics and Applications, vol. 7, SIAM, Philadelphia (2001)

    Google Scholar 

  7. Durand, A., Hermann, M., Kolaitis, P.G.: Subtractive reductions and complete problems for counting complexity classes. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 323–332. Springer, Heidelberg (2000): (To appear in Theoretical Computer Science)

    Google Scholar 

  8. Hemaspaandra, L.A., Vollmer, H.: The satanic notations: Counting classes beyond #P and other definitional adventures. SIGACT News, Complexity Theory Column 8 26(1), 2–13 (1995)

    Article  Google Scholar 

  9. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. Journal of the Association for Computing Machinery 44(4), 527–548 (1997)

    MATH  MathSciNet  Google Scholar 

  10. Jonsson, P., Krokhin, A.: Computational complexity of auditing finite attributes in statistical databases. In: Proceedings Structural Theory of Automata, Semigroups and Universal Algebra, Montreal, Canada (July 2003)

    Google Scholar 

  11. Kleinberg, J., Papadimitriou, C., Raghavan, P.: Auditing Boolean attributes. Journal of Computer and System Science 66(1), 244–253 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Köbler, J., Schöning, U., Torán, J.: On counting and approximation. Acta Informatica 26(4), 363–379 (1989)

    MATH  MathSciNet  Google Scholar 

  13. Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satisfaction. Journal of Computer and System Science 61(2), 302–332 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Krokhin, A., Jonsson, P.: Recognizing frozen variables in constraint satisfaction problems. Technical Report TR03-062, Electronic Colloquium on Computational Complexity (2003)

    Google Scholar 

  15. Lenzerini, M.: Data integration: a theoretical perspective. In: Proceeding 21st Symposium on Principles of Database Systems (PODS 2002). SIGACT-SIGMOD-SIGART, Madison (Wisconsin, USA), pp. 233–246. ACM Press, New York (2002)

    Google Scholar 

  16. Pippenger, N.: Theories of Computability. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  17. Pöschel, R.: Galois connection for operations and relations. Technical Report MATH-AL-8-2001, Technische Universität Dresden (2001)

    Google Scholar 

  18. Pöschel, R., Kalužnin, L.A.: Funktionen- und Relationenalgebren. Deutscher Verlag der Wissenschaften, Berlin (1979)

    Google Scholar 

  19. Post, E.L.: The two-valued iterative systems of mathematical logic. Annals of Mathematical Studies 5, 1–122 (1941)

    MathSciNet  Google Scholar 

  20. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings 10th Symposium on Theory of Computing (STOC 1978), San Diego (California, USA), pp. 216–226 (1978)

    Google Scholar 

  21. Silberstein, C., Brin, S., Motwani, R., Ullman, J.D.: Scalable techniques for mining causal structures. Data Mining and Knowledge Discovery 4(2-3), 163–192 (2000)

    Article  Google Scholar 

  22. Toda, S.: Computational complexity of counting complexity classes. PhD thesis, Tokyo Institute of Technology, Department of Computer Science, Tokyo, Japan (1991)

    Google Scholar 

  23. Toda, S., Watanabe, O.: Polynomial-time 1-Turing reductions from #PH to #P. Theoretical Computer Science 100(1), 205–221 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer Science 8(2), 189–201 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  25. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM Journal on Computing 8(3), 410–421 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  26. Widom, J.: Research problems in data warehousing. In: Proceedings 4th International Conference on Information and Knowledge Management (CIKM 1995), Baltimore (Maryland, USA), pp. 25–30. Association for Computing Machinery (1995)

    Google Scholar 

  27. Wrathall, C.: Complete sets and the polynomial-time hierarchy. Theoretical Computer Science 3(1), 23–33 (1976)

    Article  MathSciNet  Google Scholar 

  28. Zhuge, Y., Garcia-Molina, H., Hammer, J., Widom, J.: View maintenance in a warehousing environment. In: Carey, M.J., Schneider, D.A. (eds.) Proceedings SIGMOD International Conference on Management of Data, San Jose (California, USA), pp. 316–327. ACM Press, New York (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bauland, M., Chapdelaine, P., Creignou, N., Hermann, M., Vollmer, H. (2005). An Algebraic Approach to the Complexity of Generalized Conjunctive Queries. In: Hoos, H.H., Mitchell, D.G. (eds) Theory and Applications of Satisfiability Testing. SAT 2004. Lecture Notes in Computer Science, vol 3542. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527695_3

Download citation

  • DOI: https://doi.org/10.1007/11527695_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27829-0

  • Online ISBN: 978-3-540-31580-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics