Abstract
In this paper we introduce an effective method of the adult image classification via MPEG-7 descriptors. The proposed system uses MPEG-7 descriptors as the main feature of the adult image classification systems. The simulation shows that the proposed image classification system performs the 5 class classification task with success rate of above 70%.
This research is supported by Electronics and Telecommunications Research Institute (Project No. 0801-2004-0025)
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arentz, W.A., Olstad, B.: Classifying offensive sites based on image contents. In: Computer Vision and Image Understanding, vol. 94, pp. 293–310 (2004)
Jung, Y., Hwang, E., Kim, W.: Sports Image Classifier based on Bayesian Classification. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, J.-L. (eds.) CAEPIA/TTIA 2003. LNCS (LNAI), vol. 3040, pp. 546–555. Springer, Heidelberg (2004)
Yoo, S.-J.: Intelligent multimedia information retrieval for identifying and rating adult images. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3213, pp. 165–170. Springer, Heidelberg (2004)
Manjunath, B.S., Salembier, P., Sikora, T. (eds.): Introduction to MPEG-7 Multimedia Content Description Interface. John Wiley & Sons, West Sussex (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kim, W., Yoo, S.J., Kim, Js., Nam, T.Y., Yoon, K. (2005). Detecting Adult Images Using Seven MPEG-7 Visual Descriptors. In: Shimojo, S., Ichii, S., Ling, TW., Song, KH. (eds) Web and Communication Technologies and Internet-Related Social Issues - HSI 2005. HSI 2005. Lecture Notes in Computer Science, vol 3597. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527725_35
Download citation
DOI: https://doi.org/10.1007/11527725_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-27830-6
Online ISBN: 978-3-540-31808-8
eBook Packages: Computer ScienceComputer Science (R0)