Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

ExpertiseNet: Relational and Evolutionary Expert Modeling

  • Conference paper
User Modeling 2005 (UM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3538))

Included in the following conference series:

Abstract

We develop a novel user-centric modeling technology, which can dynamically describe and update a person’s expertise profile. In an enterprise environment, the technology can enhance employees’ collaboration and productivity by assisting in finding experts, training employees, etc. Instead of using the traditional search methods, such as the keyword match, we propose to use relational and evolutionary graph models, which we call ExpertiseNet, to describe and find experts. These ExpertiseNets are used for mining, retrieval, and visualization. We conduct experiments by building ExpertiseNets for researchers from a research paper collection. The experiments demonstrate that expertise mining and matching are more efficiently achieved based on the proposed relational and evolutionary graph models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Becerra-Fernandez, I.: Searching for Experts with Expertise-Locator Knowledge Management Systems. In: ACL 2001 Workshop Human Language Technology and Knowledge Management, pp. 9–16. New York (2001)

    Google Scholar 

  2. Bull, S., Greer, J., McCalla, G., Kettel, L., Bowes, J.: User Modelling in I-Help: What, Why, When and How. In: Proc. of the 8th International Conference on User Modeling, Sonthofen, Germany, pp. 117–126 (July 2001)

    Google Scholar 

  3. Deerwester, S., Dumais, S.T., Furna, G.W., Landauer, T.K., Harshman, R.: Indexing by Latent Semantic Analysis. Journal of the American Society for Information Science 41(6), 391–407 (1990)

    Article  Google Scholar 

  4. Henzinger, M.: Hyperlink Analysis on the Web. IEEE Internet Computing 5(1), 45–50 (2001)

    Article  Google Scholar 

  5. Kleinberg, J.: Authoritative sources in a hyperlinked environment. In: Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, pp. 604–632 (1998)

    Google Scholar 

  6. Liu, P., Curson, J., Dew, P.M.: Exploring RDF for Expertise Matching within an Organizational Memory. In: Proc. of the 14th International Conference on Advanced Information Systems Engineering, pp. 100–116 (2002)

    Google Scholar 

  7. Maron, M.E., Curry, S., Thompson, P.: An Inductive Search System: Theory, Design and Implementation. IEEE Transaction on Systems, Man and Cybernetics 16(1), 21–28 (1986)

    Article  Google Scholar 

  8. McCallum, A.K., Nigam, K., Rennie, J., Seymore, K.: Automating the construction of internet portals with machine learning. Information Retrieval 3(2), 127–163 (2000)

    Article  Google Scholar 

  9. Mockus, A., Herbsleb, J.D.: Expertise Browser: a quantitative approach to identifying expertise. In: Proc. of the 24th International Conference on Software Engineering, pp. 503–512 (2002)

    Google Scholar 

  10. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web. Stanford Digital Libraries Working Paper (1998)

    Google Scholar 

  11. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: An open architecture for collaborative filtering of netnews. In: Proc. of the ACM Conference on Computer Supported Cooperative Work, pp. 175–186 (1994)

    Google Scholar 

  12. Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys 34(1), 1–47 (2002)

    Article  Google Scholar 

  13. Schapire, R.E., Singer, Y.: BoosTexter: A boosting-based system for text categorization. Machine Learning 39(2/3), 135–168 (2000)

    Article  MATH  Google Scholar 

  14. Snijders, T.A.B.: Models for Longitudinal Network Data. In: Carrington, P., Scott, J., Wasserman, S. (eds.) Models and methods in social network analysis, Ch.11, Cambridge University Press, New York (2004) (in press, to appear)

    Google Scholar 

  15. Snijders, T.A.B.: Markov Chain Monte Carlo Estimation of Exponential Random Graph Models. Journal of Social Structure 3(2) (2002)

    Google Scholar 

  16. Staab, S.: Human language technologies for knowledge management. Intelligent Systems 16(6), 84–94 (2001)

    Article  Google Scholar 

  17. Steeter, L.A., Lochbaum, K.E.: An Expert/Expert Locating System based on Automatic Representation of Semantic Structure. In: Proc. of the Fourth IEEE Conference on Artificial Intelligence Applications, San Diego, CA, pp. 345–349 (1988)

    Google Scholar 

  18. Wasserman, S., Faust, K., Iacobucci, D.: Social Network Analysis: Theory and Methods. Cambridge University Press, Cambridge (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Song, X., Tseng, B.L., Lin, CY., Sun, MT. (2005). ExpertiseNet: Relational and Evolutionary Expert Modeling. In: Ardissono, L., Brna, P., Mitrovic, A. (eds) User Modeling 2005. UM 2005. Lecture Notes in Computer Science(), vol 3538. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527886_14

Download citation

  • DOI: https://doi.org/10.1007/11527886_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27885-6

  • Online ISBN: 978-3-540-31878-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics