Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Super-template Generation Using Successive Bayesian Estimation for Fingerprint Enrollment

  • Conference paper
Audio- and Video-Based Biometric Person Authentication (AVBPA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3546))

  • 2332 Accesses

Abstract

This paper proposes an algorithm for generating a super-template from multiple fingerprint impressions in fingerprint enrollment for the purpose of increasing recognition accuracy. The super-template is considered as a single fingerprint template which contains highly likely true minutiae based on multiple fingerprint images. The proposed algorithm creates the super-template, in which the credibility of each minutia is updated by applying a successive Bayesian estimation (SBE) to a sequence of templates obtained from input fingerprint images. Consequently, the SBE assigns a higher credibility to frequently detected minutiae and a lower credibility to minutiae that are rarely found from the input templates. Likewise, the SBE is able to estimate the credibility of the minutia type (ridge ending or bifurcation). Preliminary experiments demonstrate that, as the number of fingerprint images increases, the proposed algorithm can improve the recognition performance, while keeping the processing time and memory storage required for the super-template almost constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain, A., Hong, L., Bolle, R.: On-Line Fingerprint Verification. IEEE Trans. on PAMI 19(4), 302–314 (1997)

    Google Scholar 

  2. Maio, D., Maltoni, D.: Direct Gray-Scale Minutiae Detection In Fingerprints. IEEE Trans. PAMI 19(1), 27–39 (1997)

    Google Scholar 

  3. Hong, L., Wan, Y., Jain, A.: Fingerprint Image Enhancement: Algorithm and Performance Evaluation. IEEE Trans. PAMI 20(8), 777–789 (1998)

    Google Scholar 

  4. Farina, A., Kovacs-Vajna, Z.M., Leone, A.: Fingerprint minutiae extraction from skeletonized binary images. Pattern Recognition 32(4), 877–889 (1999)

    Article  Google Scholar 

  5. Ahn, D., Ryu, C., Kim, H.: Removal of False Minutiae based on Structural and Directional Attributes in Fingerprint Recognition. In: Proc. 3rd International Workshop on Information Security Applications, pp. 355–367 (2002)

    Google Scholar 

  6. Maio, D., Maltoni, D.: Neural Network Based Minutiae Filtering in Fingerprints. In: Proc. 14th ICPR, August 1998, pp. 1654–1658 (1998)

    Google Scholar 

  7. Jain, K., Ross, A.: Fingerprint Mosaicking. In: Proc. Int’l Conf. on Acoustic Speech and Signal Processing, vol. 4, pp. 4064–4067 (2002)

    Google Scholar 

  8. Lee, D., Choi, K., Lee, S., Kim, J.: Fingerprint Fusion Based on Minutiae and Ridge for Enrollment. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 478–485. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Toh, K.A., Yau, W.Y., Jiang, X.D., Chen, T.P., Lu, J., Lim, E.: Minutiae Data Synthesis for Fingerprint Identification Application. In: Proc. IEEE Int’l Conf. Image Processing (2001)

    Google Scholar 

  10. Jiang, X., Ser, W.: Online Fingerprint Template Improvement. IEEE Trans. PAMI 24(8), 1121–1126 (2002)

    Google Scholar 

  11. Jain, A., Uludag, U., Ross, A.: Biometric Template Selection: A Case Study in Fingerprints. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 335–342. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn., pp. 389–390 (1990)

    Google Scholar 

  13. Choi, W., Ryu, C., Kim, H.: Navigation of a Mobile Robot using Mono-Vision and Mono-Audition. Proc. IEEE SMC 4, 686–691 (1999)

    Google Scholar 

  14. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn., pp. 644–646. Prentice-Hall, Englewood Cliffs (2002)

    Google Scholar 

  15. Ryu, C., Kim, H.: A fast fingerprint matching algorithm using parzen density estimation. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 525–533. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Joun, S., Yi, E., Ryu, C., Kim, H.: A Computation of Fingerprint Similarity Measures Based on Bayesian Probability Modeling. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 512–520. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K.: FVC 2002: Second Fingerprint Verification Competition. In: Proc. 16th Int’l Conf. Pattern Recognition, vol. 3, pp. 811–814 (2002)

    Google Scholar 

  18. FVC 2002 Web site, http://bias.csr.unibo.it/fvc2002/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ryu, C., Han, Y., Kim, H. (2005). Super-template Generation Using Successive Bayesian Estimation for Fingerprint Enrollment. In: Kanade, T., Jain, A., Ratha, N.K. (eds) Audio- and Video-Based Biometric Person Authentication. AVBPA 2005. Lecture Notes in Computer Science, vol 3546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527923_74

Download citation

  • DOI: https://doi.org/10.1007/11527923_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27887-0

  • Online ISBN: 978-3-540-31638-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics