Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Nominal Techniques in Isabelle/HOL

  • Conference paper
Automated Deduction – CADE-20 (CADE 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3632))

Included in the following conference series:

Abstract

In this paper we define an inductive set that is bijective with the α-equated lambda-terms. Unlike de-Bruijn indices, however, our inductive definition includes names and reasoning about this definition is very similar to informal reasoning on paper. For this we provide a structural induction principle that requires to prove the lambda-case for fresh binders only. The main technical novelty of this work is that it is compatible with the axiom-of-choice (unlike earlier nominal logic work by Pitts et al); thus we were able to implement all results in Isabelle/HOL and use them to formalise the standard proofs for Church-Rosser and strong-normalisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Altenkirch, T.: A Formalization of the Strong Normalisation Proof for System F in LEGO. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 13–28. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  2. Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce, B.C., Sewell, P., Vytiniotis, D., Washburn, G., Weirich, S., Zdancewic, S.: Mechanized Metatheory for the Masses: The PoplMark Challenge. (accepted at tphol) (2005)

    Google Scholar 

  3. Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics. In: Studies in Logic and the Foundations of Mathematics, vol. 103, North-Holland, Amsterdam (1981)

    Google Scholar 

  4. Despeyroux, J., Felty, A., Hirschowitz, A.: Higher-Order Abstract Syntax in Coq. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 124–138. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  5. Gabbay, M.J.: A Theory of Inductive Definitions With α-equivalence. PhD thesis, University of Cambridge (2000)

    Google Scholar 

  6. Gabbay, M.J., Pitts, A.M.: A New Approach to Abstract Syntax with Variable Binding. Formal Aspects of Computing 13, 341–363 (2001)

    Article  Google Scholar 

  7. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. In: Cambridge Tracts in Theoretical Computer Science, vol. 7, Cambridge University Press, Cambridge (1989)

    Google Scholar 

  8. Gordon, A.D.: A Mechanisation of Name-Carrying Syntax up to Alpha-Conversion. In: Joyce, J.J., Seger, C.-J.H. (eds.) HUG 1993. LNCS, vol. 780, pp. 414–426. Springer, Heidelberg (1994)

    Google Scholar 

  9. Gordon, A.D., Melham, T.: Five Axioms of Alpha-Conversion. In: von Wright, J., Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 173–190. Springer, Heidelberg (1996)

    Google Scholar 

  10. Hirschkoff, D.: A Full Formalisation of π-Calculus Theory in the Calculus of Constructions. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 153–169. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  11. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  12. Norrish, M.: Mechanising λ-calculus using a Classical First Order Theory of Terms with Permutations, forthcoming

    Google Scholar 

  13. Norrish, M.: Recursive function definition for types with binders. In: Slind, K., Bunker, A., Gopalakrishnan, G.C. (eds.) TPHOLs 2004. LNCS, vol. 3223, pp. 241–256. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Paulson, L.: Defining Functions on Equivalence Classes. ACM Transactions on Computational Logic (to appear)

    Google Scholar 

  15. Pfenning, F., Elliott, C.: Higher-Order Abstract Syntax. In: Proc. of the ACM SIGPLAN Conference PLDI, pp. 199–208. ACM Press, New York (1989)

    Google Scholar 

  16. Pitts, A.M.: Nominal Logic, A First Order Theory of Names and Binding. Information and Computation 186, 165–193 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. In: Cambridge Tracts in Theoretical Computer Science, vol. 43, Cambridge University Press, Cambridge (2000)

    Google Scholar 

  18. Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal Unification. Theoretical Computer Science 323(1-2), 473–497 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. VanInwegen, M.: The Machine-Assisted Proof of Programming Language Properties. PhD thesis, University of Pennsylvania, Available as MS-CIS-96-31 (1996)

    Google Scholar 

  20. Wenzel, M.: Using Axiomatic Type Classes in Isabelle. Manual in the Isabelle distribution

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Urban, C., Tasson, C. (2005). Nominal Techniques in Isabelle/HOL. In: Nieuwenhuis, R. (eds) Automated Deduction – CADE-20. CADE 2005. Lecture Notes in Computer Science(), vol 3632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11532231_4

Download citation

  • DOI: https://doi.org/10.1007/11532231_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28005-7

  • Online ISBN: 978-3-540-31864-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics