Abstract
In this paper we define an inductive set that is bijective with the α-equated lambda-terms. Unlike de-Bruijn indices, however, our inductive definition includes names and reasoning about this definition is very similar to informal reasoning on paper. For this we provide a structural induction principle that requires to prove the lambda-case for fresh binders only. The main technical novelty of this work is that it is compatible with the axiom-of-choice (unlike earlier nominal logic work by Pitts et al); thus we were able to implement all results in Isabelle/HOL and use them to formalise the standard proofs for Church-Rosser and strong-normalisation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Altenkirch, T.: A Formalization of the Strong Normalisation Proof for System F in LEGO. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 13–28. Springer, Heidelberg (1993)
Aydemir, B.E., Bohannon, A., Fairbairn, M., Foster, J.N., Pierce, B.C., Sewell, P., Vytiniotis, D., Washburn, G., Weirich, S., Zdancewic, S.: Mechanized Metatheory for the Masses: The PoplMark Challenge. (accepted at tphol) (2005)
Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics. In: Studies in Logic and the Foundations of Mathematics, vol. 103, North-Holland, Amsterdam (1981)
Despeyroux, J., Felty, A., Hirschowitz, A.: Higher-Order Abstract Syntax in Coq. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 124–138. Springer, Heidelberg (1995)
Gabbay, M.J.: A Theory of Inductive Definitions With α-equivalence. PhD thesis, University of Cambridge (2000)
Gabbay, M.J., Pitts, A.M.: A New Approach to Abstract Syntax with Variable Binding. Formal Aspects of Computing 13, 341–363 (2001)
Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. In: Cambridge Tracts in Theoretical Computer Science, vol. 7, Cambridge University Press, Cambridge (1989)
Gordon, A.D.: A Mechanisation of Name-Carrying Syntax up to Alpha-Conversion. In: Joyce, J.J., Seger, C.-J.H. (eds.) HUG 1993. LNCS, vol. 780, pp. 414–426. Springer, Heidelberg (1994)
Gordon, A.D., Melham, T.: Five Axioms of Alpha-Conversion. In: von Wright, J., Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 173–190. Springer, Heidelberg (1996)
Hirschkoff, D.: A Full Formalisation of π-Calculus Theory in the Calculus of Constructions. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 153–169. Springer, Heidelberg (1997)
Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)
Norrish, M.: Mechanising λ-calculus using a Classical First Order Theory of Terms with Permutations, forthcoming
Norrish, M.: Recursive function definition for types with binders. In: Slind, K., Bunker, A., Gopalakrishnan, G.C. (eds.) TPHOLs 2004. LNCS, vol. 3223, pp. 241–256. Springer, Heidelberg (2004)
Paulson, L.: Defining Functions on Equivalence Classes. ACM Transactions on Computational Logic (to appear)
Pfenning, F., Elliott, C.: Higher-Order Abstract Syntax. In: Proc. of the ACM SIGPLAN Conference PLDI, pp. 199–208. ACM Press, New York (1989)
Pitts, A.M.: Nominal Logic, A First Order Theory of Names and Binding. Information and Computation 186, 165–193 (2003)
Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. In: Cambridge Tracts in Theoretical Computer Science, vol. 43, Cambridge University Press, Cambridge (2000)
Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal Unification. Theoretical Computer Science 323(1-2), 473–497 (2004)
VanInwegen, M.: The Machine-Assisted Proof of Programming Language Properties. PhD thesis, University of Pennsylvania, Available as MS-CIS-96-31 (1996)
Wenzel, M.: Using Axiomatic Type Classes in Isabelle. Manual in the Isabelle distribution
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Urban, C., Tasson, C. (2005). Nominal Techniques in Isabelle/HOL. In: Nieuwenhuis, R. (eds) Automated Deduction – CADE-20. CADE 2005. Lecture Notes in Computer Science(), vol 3632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11532231_4
Download citation
DOI: https://doi.org/10.1007/11532231_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28005-7
Online ISBN: 978-3-540-31864-4
eBook Packages: Computer ScienceComputer Science (R0)