Abstract
We present the theory and implementation of a theorem prover for first-order intuitionistic linear logic based on the inverse method. The central proof-theoretic insights underlying the prover concern resource management and focused derivations, both of which are traditionally understood in the domain of backward reasoning systems such as logic programming. We illustrate how resource management, focusing, and other intrinsic properties of linear connectives affect the basic forward operations of rule application, contraction, and forward subsumption. We also present some preliminary experimental results obtained with our implementation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
Andreoli, J.M.: Logic programming with focusing proofs in linear logic. Journal of Logic and Computation 2, 297–347 (1992)
Galmiche, D., Perrier, G.: Foundations of proof search strategies design in linear logic. In: Matiyasevich, Y.V., Nerode, A. (eds.) LFCS 1994. LNCS, vol. 813, pp. 101–113. Springer, Heidelberg (1994)
Galmiche, D.: Connection methods in linear logic and proof nets constructions. Theoretical Computer Science 232, 213–272 (2000)
Harland, J., Pym, D.J.: Resource-distribution via boolean constraints. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 222–236. Springer, Heidelberg (1997)
Cervesato, I., Hodas, J.S., Pfenning, F.: Efficient resource management for linear logic proof search. Theoretical Computer Science 232, 133–163 (2000)
Pym, D.J., Harland, J.A.: The uniform proof-theoretic foundation of linear logic programming. Journal of Logic and Computation 4, 175–207 (1994)
Hodas, J.S., Miller, D.: Logic programming in a fragment of intuitionistic linear logic. Information and Computation 110, 327–365 (1994)
Mints, G.: Resolution calculus for the first order linear logic. Journal of Logic, Language and Information 2, 59–83 (1993)
Tammet, T.: Proof strategies in linear logic. Journal of Automated Reasoning 12, 273–304 (1994)
Cervesato, I., Pfenning, F., Walker, D., Watkins, K.: A concurrent logical framework I & II. Technical Report CMU-CS-02-101 and 102, Department of Computer Science, Carnegie Mellon University (2002) Revised (May 2003)
Chaudhuri, K., Pfenning, F.: Focusing the inverse method for linear logic. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 200–215. Springer, Heidelberg (2005) (to appear); an extended version available as Technical Report CMU-CS-05-106, Department of Computer Science, Carnegie Mellon University (2005)
Méry, D.: Preuves et Sémantiques dans des Logiques de Ressources. PhD thesis, Université Henri Poincaré, Nancy, France (2004)
Donnelly, K., Gibson, T., Krishnaswami, N., Magill, S., Park, S.-W.: The inverse method for the logic of bunched implications. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 466–480. Springer, Heidelberg (2005)
Chang, B.Y.E., Chaudhuri, K., Pfenning, F.: A judgmental analysis of linear logic. Technical Report CMU-CS-03-131R, Carnegie Mellon University (2003)
Degtyarev, A., Voronkov, A.: The inverse method. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 179–272. MIT Press, Cambridge (2001)
Tammet, T.: Towards efficient subsumption. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 427–441. Springer, Heidelberg (1998)
Graf, P.: Term Indexing. LNCS, vol. 1053. Springer, Heidelberg (1996)
Andreoli, J.M.: Focussing and proof construction. Annals of Pure and Applied Logic 107, 131–163 (2001)
Mantel, H., Otten, J.: LinTAP: A tableau prover for linear logic. In: Murray, N.V. (ed.) TABLEAUX 1999. LNCS (LNAI), vol. 1617, pp. 217–231. Springer, Heidelberg (1999)
Tamura, N.: Llprover (last checked)) At (2005), http://bach.istc.kobe-u.ac.jp/llprover
Lincoln, P., Mitchell, J.C., Scedrov, A., Shankar, N.: Decision problems for propositional linear logic. Annals of Pure and Applied Logic 56, 239–311 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chaudhuri, K., Pfenning, F. (2005). A Focusing Inverse Method Theorem Prover for First-Order Linear Logic. In: Nieuwenhuis, R. (eds) Automated Deduction – CADE-20. CADE 2005. Lecture Notes in Computer Science(), vol 3632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11532231_6
Download citation
DOI: https://doi.org/10.1007/11532231_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28005-7
Online ISBN: 978-3-540-31864-4
eBook Packages: Computer ScienceComputer Science (R0)