Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Focusing Inverse Method Theorem Prover for First-Order Linear Logic

  • Conference paper
Automated Deduction – CADE-20 (CADE 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3632))

Included in the following conference series:

Abstract

We present the theory and implementation of a theorem prover for first-order intuitionistic linear logic based on the inverse method. The central proof-theoretic insights underlying the prover concern resource management and focused derivations, both of which are traditionally understood in the domain of backward reasoning systems such as logic programming. We illustrate how resource management, focusing, and other intrinsic properties of linear connectives affect the basic forward operations of rule application, contraction, and forward subsumption. We also present some preliminary experimental results obtained with our implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. Journal of Logic and Computation 2, 297–347 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Galmiche, D., Perrier, G.: Foundations of proof search strategies design in linear logic. In: Matiyasevich, Y.V., Nerode, A. (eds.) LFCS 1994. LNCS, vol. 813, pp. 101–113. Springer, Heidelberg (1994)

    Google Scholar 

  4. Galmiche, D.: Connection methods in linear logic and proof nets constructions. Theoretical Computer Science 232, 213–272 (2000)

    Google Scholar 

  5. Harland, J., Pym, D.J.: Resource-distribution via boolean constraints. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 222–236. Springer, Heidelberg (1997)

    Google Scholar 

  6. Cervesato, I., Hodas, J.S., Pfenning, F.: Efficient resource management for linear logic proof search. Theoretical Computer Science 232, 133–163 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Pym, D.J., Harland, J.A.: The uniform proof-theoretic foundation of linear logic programming. Journal of Logic and Computation 4, 175–207 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hodas, J.S., Miller, D.: Logic programming in a fragment of intuitionistic linear logic. Information and Computation 110, 327–365 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Mints, G.: Resolution calculus for the first order linear logic. Journal of Logic, Language and Information 2, 59–83 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Tammet, T.: Proof strategies in linear logic. Journal of Automated Reasoning 12, 273–304 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cervesato, I., Pfenning, F., Walker, D., Watkins, K.: A concurrent logical framework I & II. Technical Report CMU-CS-02-101 and 102, Department of Computer Science, Carnegie Mellon University (2002) Revised (May 2003)

    Google Scholar 

  12. Chaudhuri, K., Pfenning, F.: Focusing the inverse method for linear logic. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 200–215. Springer, Heidelberg (2005) (to appear); an extended version available as Technical Report CMU-CS-05-106, Department of Computer Science, Carnegie Mellon University (2005)

    Google Scholar 

  13. Méry, D.: Preuves et Sémantiques dans des Logiques de Ressources. PhD thesis, Université Henri Poincaré, Nancy, France (2004)

    Google Scholar 

  14. Donnelly, K., Gibson, T., Krishnaswami, N., Magill, S., Park, S.-W.: The inverse method for the logic of bunched implications. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 466–480. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Chang, B.Y.E., Chaudhuri, K., Pfenning, F.: A judgmental analysis of linear logic. Technical Report CMU-CS-03-131R, Carnegie Mellon University (2003)

    Google Scholar 

  16. Degtyarev, A., Voronkov, A.: The inverse method. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 179–272. MIT Press, Cambridge (2001)

    Chapter  Google Scholar 

  17. Tammet, T.: Towards efficient subsumption. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 427–441. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  18. Graf, P.: Term Indexing. LNCS, vol. 1053. Springer, Heidelberg (1996)

    Google Scholar 

  19. Andreoli, J.M.: Focussing and proof construction. Annals of Pure and Applied Logic 107, 131–163 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mantel, H., Otten, J.: LinTAP: A tableau prover for linear logic. In: Murray, N.V. (ed.) TABLEAUX 1999. LNCS (LNAI), vol. 1617, pp. 217–231. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  21. Tamura, N.: Llprover (last checked)) At (2005), http://bach.istc.kobe-u.ac.jp/llprover

  22. Lincoln, P., Mitchell, J.C., Scedrov, A., Shankar, N.: Decision problems for propositional linear logic. Annals of Pure and Applied Logic 56, 239–311 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chaudhuri, K., Pfenning, F. (2005). A Focusing Inverse Method Theorem Prover for First-Order Linear Logic. In: Nieuwenhuis, R. (eds) Automated Deduction – CADE-20. CADE 2005. Lecture Notes in Computer Science(), vol 3632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11532231_6

Download citation

  • DOI: https://doi.org/10.1007/11532231_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28005-7

  • Online ISBN: 978-3-540-31864-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics