Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Off-Line Algorithms for Minimizing Total Flow Time in Broadcast Scheduling

  • Conference paper
Computing and Combinatorics (COCOON 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3595))

Included in the following conference series:

Abstract

We study the off-line broadcast scheduling problem to minimize total (or average) flow time. Assume the server has k pages and the requests arrive at n distinct times, we give the first algorithm to find the optimal schedule for the server with a single channel, in O(k 3(n+k)k − − 1) time. For m-channel case, i.e., the server can broadcast m different pages at a time where m < k, we find the optimal schedule in O(n k − − m) time when k and m are constants. In the single channel case, we also give a simple linear-time approximation algorithm to minimize average flow time, which achieves an additive (k–1)/2-approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bansal, N., Charikar, S.K.M., Naor, J.: Approximating the aversage response time in broadcast scheduling. In: SODA 2005 (2005)

    Google Scholar 

  2. Bartal, Y., Muthukrishnan, S.: Minimizing maximum response time in scheduling broadcasts. In: SODA 2000, pp. 558–559 (2000)

    Google Scholar 

  3. Edmonds, J., Pruhs, K.: Multicast pull scheduling: When fairness is fine. Algorithmica 36(3), 315–330 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Edmonds, J., Pruhs, K.: A maiden analysis of longest wait first. In: SODA 2004, pp. 818–827 (2004)

    Google Scholar 

  5. Erlebach, T., Hall, A.: NP-hardness of broadcast scheduling and inapproximability of single-source unsplittable min-cost flow. In: SODA 2002, pp. 194–202 (2002)

    Google Scholar 

  6. Galil, Z., Park, K.: A linear-time algorithm for concave one-dimensional dynamic programming. Inf. Process. Lett. 33(6), 309–311 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gandhi, R., Khuller, S., Kim, Y.A., Wan, Y.-C.J.: Algorithms for minimizing response time in broadcast scheduling. Algorithmica 38(4), 597–608 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Dependent rounding in bipartite graphs. In: FOCS 2002, pp. 323–332 (2002)

    Google Scholar 

  9. Kalyanasundaram, B., Pruhs, K.R., Velauthapillai, M.: Scheduling broadcasts in wireless networks. Journal of Scheduling 4(6), 339–354 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chan, WT., Chin, F.Y.L., Zhang, Y., Zhu, H., Shen, H., Wong, P.W.H. (2005). Off-Line Algorithms for Minimizing Total Flow Time in Broadcast Scheduling. In: Wang, L. (eds) Computing and Combinatorics. COCOON 2005. Lecture Notes in Computer Science, vol 3595. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11533719_33

Download citation

  • DOI: https://doi.org/10.1007/11533719_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28061-3

  • Online ISBN: 978-3-540-31806-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics