Abstract
A c.e. real x is Solovay reducible to another c.e. real y if x can be approximated at least as efficiently as y by means of increasing computable sequences of rational numbers. The Solovay reducibility classifies elegantly the relative randomness of c.e. reals. Especially, the c.e. random reals are complete unter the Solovay reducibility for c.e. reals. In this paper we investigate an extension of the Solovay reducibility to the Δ\(^{\rm 0}_{\rm 2}\)-reals and show that the c.e. random reals are complete under (extended) Solovay reducibility for d-c.e. reals too. Actually we show that only the d-c.e. reals can be Solovay reducible to an c.e. random real. Furthermore, we show that this fails for the class of divergence bounded computable reals which extends the class of d-c.e. reals properly. In addition, we show also that any d-c.e. random reals are either c.e. or co-c.e.
This work is supported by DFG (446 CHV 113/240/0-1) and NSFC (10420130638).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ambos-Spies, K., Weihrauch, K., Zheng, X.: Weakly computable real numbers. Journal of Complexity 16(4), 676–690 (2000)
Calude, C.S., Hertling, P.H., Khoussainov, B., Wang, Y.: Recursively enumerable reals and Chaitin Ω numbers. Theoretical Computer Science 255, 125–149 (2001)
Chaitin, G.: A theory of program size formally identical to information theory. J. of ACM 22, 329–340 (1975)
Downey, R.G.: Some recent progress in algorithmic randomness. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 42–83. Springer, Heidelberg (2004)
Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. Springer, Heidelberg (2000) (monograph to be published)
Downey, R.G., Hirschfeldt, D.R., LaForte, G.: Randomness and reducibility. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 316–327. Springer, Heidelberg (2001)
Downey, R.G., Hirschfeldt, D.R., Nies, A.: Randomness, computability, and density. SIAM J. Comput. 31(4), 1169–1183 (2002) (electronic)
Kuçera, A., Slaman, T.A.: Randomness and recursive enumerability. SIAM J. Comput. 31(1), 199–211 (2001)
Levin, L.A.: The concept of a random sequence. Dokl. Akad. Nauk SSSR 212, 548–550 (1973); English translation: Soviet Math. Dokl. 212, 1413–1416 (1974)
Martin-Löf, P.: The definition of random sequences. Information and Control 9, 602–619 (1966)
Raichev, A.: D.c.e. reals, relative randomness, and real closed fields. In: CCA 2004, August 16-20, Lutherstadt Wittenberg, Germany (2004)
Solovay, R.M.: Draft of a paper (or a series of papers) on chaitin’s work.. IBM Thomas J. Watson Research Center, Yorktown Heights, NY, p. 215 (1975) (manuscript)
Zheng, X., Rettinger, R., Gengler, R.: Closure properties of real number classes under CBV functions. Theory of Computing Systems (2005) (to appear)
Zheng, X., Rettinger, R.: On the extensions of solovay-reducibility. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 360–369. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rettinger, R., Zheng, X. (2005). Solovay Reducibility on D-c.e Real Numbers. In: Wang, L. (eds) Computing and Combinatorics. COCOON 2005. Lecture Notes in Computer Science, vol 3595. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11533719_37
Download citation
DOI: https://doi.org/10.1007/11533719_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28061-3
Online ISBN: 978-3-540-31806-4
eBook Packages: Computer ScienceComputer Science (R0)