Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Predicate Selection for Structural Decision Trees

  • Conference paper
Inductive Logic Programming (ILP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3625))

Included in the following conference series:

  • 572 Accesses

Abstract

We study predicate selection functions (also known as splitting rules) for structural decision trees and propose two improvements to existing schemes. The first is in classification learning, where we reconsider the use of accuracy as a predicate selection function and show that, on practical grounds, it is a better alternative to other commonly used functions. The second is in regression learning, where we consider the standard mean squared error measure and give a predicate pruning result for it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anthony, M., Bartlett, P.L.: Neural Network Learning: Theoretical Foundations. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  2. Blockeel, H.: Top-Down Induction of First Order Logical Decision Trees. PhD thesis, Departement Computerwetenschappen, Katholieke Universiteit Leuven (1998)

    Google Scholar 

  3. Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees. Artificial Intelligence 101(1-2), 285–297 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bowers, A.F., Giraud-Carrier, C., Lloyd, J.W.: Classification of individuals with complex structure. In: Langley, P. (ed.) Proceedings of the 17th International Conference on Machine Learning, pp. 81–88. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  5. Bowers, A.F., Giraud-Carrier, C., Lloyd, J.W.: A knowledge representation framework for inductive learning (2001), Available at http://rsise.anu.edu.au/~jwl/

  6. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Chapman & Hall, New York (1984)

    MATH  Google Scholar 

  7. Buntine, W., Niblett, T.: A further comparison of splitting rules for decisiontree induction. Machine Learning 8, 75–85 (1992)

    Google Scholar 

  8. Kearns, M., Mansour, Y.: On the boosting ability of top-down decision tree learning algorithms. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, pp. 459–468. ACM Press, New York (1996)

    Google Scholar 

  9. Kramer, S.: Structural regression trees. In: Proceedings of the 13th National Conference on Artificial Intelligence, pp. 812–819. AAAI Press, Menlo Park (1996)

    Google Scholar 

  10. Kramer, S., Widmer, G.: Inducing classification and regression trees in first order logic. In: Džeroski, S., Lavrač, N. (eds.) Relational Data Mining, ch. 6. Springer, Heidelberg (2001)

    Google Scholar 

  11. Lloyd, J.W.: Logic for Learning: Learning Comprehensible Theories from Structured Data. In: Cognitive Technologies. Springer, Heidelberg (2003)

    Google Scholar 

  12. Mingers, J.: An empirical comparison of selection measures for decision-tree induction. Machine Learning 3, 319–342 (1989)

    Google Scholar 

  13. Muggleton, S., Firth, J.: Relational rule learning with CProgol4.4: A tutorial introduction. In: Džeroski, S., Lavrač, N. (eds.) Relational Data Mining, ch. 7. Springer, Heidelberg (2001)

    Google Scholar 

  14. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  15. Srinivasan, A.: The Aleph Manual. Technical report, Computing Laboratory, Oxford University (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ng, K.S., Lloyd, J.W. (2005). Predicate Selection for Structural Decision Trees. In: Kramer, S., Pfahringer, B. (eds) Inductive Logic Programming. ILP 2005. Lecture Notes in Computer Science(), vol 3625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11536314_16

Download citation

  • DOI: https://doi.org/10.1007/11536314_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28177-1

  • Online ISBN: 978-3-540-31851-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics