Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

SVM Regression and Its Application to Image Compression

  • Conference paper
Advances in Intelligent Computing (ICIC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3644))

Included in the following conference series:

Abstract

This paper proposes a new image compression algorithm which combines SVM regression with wavelet transform. Compression is achieved by using SVM regression to approximate wavelet coefficients. Based on the characteristic of wavelet decomposition, the coefficient correlation in wavelet domain is analyzed. According to the correlation characteristic at different scales and orientations, three kinds of arranging methods of wavelet coefficients are designed, which make SVM compress the coefficients more efficiently. Moreover, an effective entropy coder based on run-length and arithmetic coding is used to encode the support vectors and weights. Experimental results show that the compression performance of the algorithm achieve much improvement.

Supported by the National Defense Basic Research Fund and the Program for New Century Excellent Talents in University. The research is made in the State Key Lab of Software Development Environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Namphol, A., Chin, S.H., Arozullah, M.: Image Compression with a Hierarchical Neural Nnetwork. IEEE Transactions on Aerospace and Electronic Systems 32(1), 326–338 (1996)

    Article  Google Scholar 

  2. Chen, O.T.-C., Sheu, B.J., Fang, W.-C.: Image Compression using Self-organization Networks. IEEE Transactions on Circuits and Systems for Video Technology 4(5), 480–498 (1994)

    Article  Google Scholar 

  3. Amerijckx, C., Verleysen, M., Thissen, P., Legat, J.-D.: Image Compression by Self-organized Kohonen Map. IEEE Transactions on Neural Networks 9(3), 503–507 (1998)

    Article  Google Scholar 

  4. Robinson, J., Kecman, V.: Combing Support Vector Machine Learning with the Discrete Cosine Transform in Image Compression. IEEE Transactions on Neural Networks 14(4), 950–958 (2003)

    Article  Google Scholar 

  5. Drucker, H., Burges, C.J.C., Kaufmann, L., Smola, A., Vapnik, V.: Support Vector Regression Machines. MIT Press, Cambridge (1997)

    Google Scholar 

  6. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  7. Antonini, M., Barlaud, M., Mathieu, P., Daubechies, I.: Image Coding using Wavelet Transform. IEEE Transactions on Image Processing 1(2), 205–220 (1992)

    Article  Google Scholar 

  8. Mallat, S.G.: A Theory for Multiresolution Signal Decomposition: the Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  9. Liu, J., Moulin, P.: Information—theoretic Analysis of Interscale and Intrascale Dependencies between Image Wavelet Coefficients. IEEE Transactions on Image Processing 10(11), 1647–1658 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bo, L., Hai, W.: Bit Plane Predicting Image Compression Algorithm Based on Wavelet Packet Transform. Chinese J. Computer 22(7), 685–691 (1999)

    Google Scholar 

  11. Jiang, J.: Image Compression with Neural Networks—A survey. Signal Processing: Image Communication 14, 737–760 (1999)

    Article  Google Scholar 

  12. Wang, X.L., Han, H., Peng, S.L.: Image Restoration Based on Wavelet-domain Local Guassian Model. Jorunal of Software 15(3), 433–450 (2004)

    Google Scholar 

  13. Witten, J.H., Neal, R., Cleary, J.G.: Arithmetic Coding for Data Compression. Comm. ACM 30, 520–540 (1987)

    Article  Google Scholar 

  14. http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiao, R., Li, Y., Wang, Q., Li, B. (2005). SVM Regression and Its Application to Image Compression. In: Huang, DS., Zhang, XP., Huang, GB. (eds) Advances in Intelligent Computing. ICIC 2005. Lecture Notes in Computer Science, vol 3644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538059_78

Download citation

  • DOI: https://doi.org/10.1007/11538059_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28226-6

  • Online ISBN: 978-3-540-31902-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics