Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Algebraic Approach for the Unsatisfiability of Nonlinear Constraints

  • Conference paper
Computer Science Logic (CSL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3634))

Included in the following conference series:

Abstract

We describe a simple algebraic semi-decision procedure for detecting unsatisfiability of a (quantifier-free) conjunction of nonlinear equalities and inequalities. The procedure consists of Gröbner basis computation plus extension rules that introduce new definitions, and hence it can be described as a critical-pair completion-based logical procedure. This procedure is shown to be sound and refutationally complete. When projected onto the linear case, our procedure reduces to the Simplex method for solving linear constraints. If only finitely many new definitions are introduced, then the procedure is also terminating. Such terminating, but potentially incomplete, procedures are used in “incompleteness-tolerant” applications.

Research supported in part by the National Science Foundation under grants CCR-0311348 and ITR-CCR-0326540.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Audemard, G., Bertoli, P., Cimatti, A., Kornilowicz, A., Sebastiani, R.: A SAT based approach for solving formulas over boolean and linear mathematical propositions. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 195–210. Springer, Heidelberg (2002)

    Google Scholar 

  2. Bachmair, L., Ganzinger, H.: Buchberger’s algorithm: A constraint-based completion procedure. In: Jouannaud, J.-P. (ed.) CCL 1994. LNCS, vol. 845, Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  3. Bachmair, L., Tiwari, A.: D-bases for polynomial ideals over commutative noetherian rings. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 113–127. Springer, Heidelberg (1996)

    Google Scholar 

  4. Basu, S., Gonzalez-Vega, L. (eds.): Algorithmic and Quantitative Real Algebraic Geometry. DIMACS Series in DMTCS, vol. 60 (2003)

    Google Scholar 

  5. Basu, S., Pollack, R., Roy, M.-F.: On the combinatorial and algebraic complexity of quantifier elimination. J. of the ACM 43(6), 1002–1045 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  7. Collins, G.E.: Quantifier elimination for the elementary theory of real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)

    Google Scholar 

  8. Datta, R.S.: Using computer algebra to compute Nash equilibria. In: Intl. Symp. on Symbolic and Algebraic Computation, ISSAC 2003, pp. 74–79 (2003)

    Google Scholar 

  9. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N.: The ICS decision procedures for embedded deduction. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 218–222. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Communications of the ACM 22(8), 465–476 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  11. Einsiedler, M., Tuncel, H.: When does a polynomial ideal contain a positive polynomial? J. Pure Appl. Algebra 164(1-2), 149–152 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Harrison, J.: Theorem proving with the real numbers. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  13. Hong, H.: Quantifier elimination in elementary algebra and geometry by partial cylindrical algebraic decomposition version 13 (1995), http://www.gwdg.de/~cais/systeme/saclib,www.eecis.udel.edu/~saclib/

  14. Krivine, J.L.: Anneaux preordonnes. J. Anal. Math. 12, 307–326 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  15. Parrilo, P.A.: SOS methods for semi-algebraic games and optimization. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, p. 54. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Prajna, S., Papachristodoulou, A., Parrilo, P.A.: SOSTOOLS: Sum of Square Optimization Toolbox (2002), http://www.cds.caltech.edu/sostools

  17. Ratschan, S.: Applications of quantified constraint solving over the reals: Bibliography (2004), http://www.mpi-sb.mpg.de/~ratschan/appqcs.html

  18. Renegar, J.: On the computational complexity and geometry of the first order theory of the reals. J. of Symbolic Computation 13(3), 255–352 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Roy, M.-F.: Degree bounds for Stengle’s Positivstellensatz. In: Network workshop on real algebra (2003), http://ihp-raag.org/index.php

  20. Stengle, G.: A Nullstellensatz and a Positivstellensatz in semialgebraic geometry. Math. Ann. 207, 87–97 (1974)

    Article  MathSciNet  Google Scholar 

  21. Stump, A., Barrett, C.W., Dill, D.L.: CVC: A cooperating validity checker. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 500–504. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press (1948)

    Google Scholar 

  23. Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 465–478. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  24. Weispfenning, V.: The complexity of linear problems in fields. J. of Symbolic Computation 5 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tiwari, A. (2005). An Algebraic Approach for the Unsatisfiability of Nonlinear Constraints. In: Ong, L. (eds) Computer Science Logic. CSL 2005. Lecture Notes in Computer Science, vol 3634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538363_18

Download citation

  • DOI: https://doi.org/10.1007/11538363_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28231-0

  • Online ISBN: 978-3-540-31897-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics