Abstract
We describe a simple algebraic semi-decision procedure for detecting unsatisfiability of a (quantifier-free) conjunction of nonlinear equalities and inequalities. The procedure consists of Gröbner basis computation plus extension rules that introduce new definitions, and hence it can be described as a critical-pair completion-based logical procedure. This procedure is shown to be sound and refutationally complete. When projected onto the linear case, our procedure reduces to the Simplex method for solving linear constraints. If only finitely many new definitions are introduced, then the procedure is also terminating. Such terminating, but potentially incomplete, procedures are used in “incompleteness-tolerant” applications.
Research supported in part by the National Science Foundation under grants CCR-0311348 and ITR-CCR-0326540.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Audemard, G., Bertoli, P., Cimatti, A., Kornilowicz, A., Sebastiani, R.: A SAT based approach for solving formulas over boolean and linear mathematical propositions. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 195–210. Springer, Heidelberg (2002)
Bachmair, L., Ganzinger, H.: Buchberger’s algorithm: A constraint-based completion procedure. In: Jouannaud, J.-P. (ed.) CCL 1994. LNCS, vol. 845, Springer, Heidelberg (1994)
Bachmair, L., Tiwari, A.: D-bases for polynomial ideals over commutative noetherian rings. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 113–127. Springer, Heidelberg (1996)
Basu, S., Gonzalez-Vega, L. (eds.): Algorithmic and Quantitative Real Algebraic Geometry. DIMACS Series in DMTCS, vol. 60 (2003)
Basu, S., Pollack, R., Roy, M.-F.: On the combinatorial and algebraic complexity of quantifier elimination. J. of the ACM 43(6), 1002–1045 (1996)
Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Springer, Heidelberg (1998)
Collins, G.E.: Quantifier elimination for the elementary theory of real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)
Datta, R.S.: Using computer algebra to compute Nash equilibria. In: Intl. Symp. on Symbolic and Algebraic Computation, ISSAC 2003, pp. 74–79 (2003)
de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N.: The ICS decision procedures for embedded deduction. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 218–222. Springer, Heidelberg (2004)
Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Communications of the ACM 22(8), 465–476 (1979)
Einsiedler, M., Tuncel, H.: When does a polynomial ideal contain a positive polynomial? J. Pure Appl. Algebra 164(1-2), 149–152 (2001)
Harrison, J.: Theorem proving with the real numbers. Springer, Heidelberg (1998)
Hong, H.: Quantifier elimination in elementary algebra and geometry by partial cylindrical algebraic decomposition version 13 (1995), http://www.gwdg.de/~cais/systeme/saclib,www.eecis.udel.edu/~saclib/
Krivine, J.L.: Anneaux preordonnes. J. Anal. Math. 12, 307–326 (1964)
Parrilo, P.A.: SOS methods for semi-algebraic games and optimization. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, p. 54. Springer, Heidelberg (2005)
Prajna, S., Papachristodoulou, A., Parrilo, P.A.: SOSTOOLS: Sum of Square Optimization Toolbox (2002), http://www.cds.caltech.edu/sostools
Ratschan, S.: Applications of quantified constraint solving over the reals: Bibliography (2004), http://www.mpi-sb.mpg.de/~ratschan/appqcs.html
Renegar, J.: On the computational complexity and geometry of the first order theory of the reals. J. of Symbolic Computation 13(3), 255–352 (1992)
Roy, M.-F.: Degree bounds for Stengle’s Positivstellensatz. In: Network workshop on real algebra (2003), http://ihp-raag.org/index.php
Stengle, G.: A Nullstellensatz and a Positivstellensatz in semialgebraic geometry. Math. Ann. 207, 87–97 (1974)
Stump, A., Barrett, C.W., Dill, D.L.: CVC: A cooperating validity checker. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 500–504. Springer, Heidelberg (2002)
Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press (1948)
Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 465–478. Springer, Heidelberg (2002)
Weispfenning, V.: The complexity of linear problems in fields. J. of Symbolic Computation 5 (1988)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tiwari, A. (2005). An Algebraic Approach for the Unsatisfiability of Nonlinear Constraints. In: Ong, L. (eds) Computer Science Logic. CSL 2005. Lecture Notes in Computer Science, vol 3634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538363_18
Download citation
DOI: https://doi.org/10.1007/11538363_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28231-0
Online ISBN: 978-3-540-31897-2
eBook Packages: Computer ScienceComputer Science (R0)