Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Granular Analysis Method in Signal Processing

  • Conference paper
Advances in Natural Computation (ICNC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3611))

Included in the following conference series:

  • 1598 Accesses

Abstract

This paper presents multiple granular descriptions of a signal character and the significance of different granular analyses in signal processing. After given the concepts of granularity, we discuss the relation of different granularity, define the concepts of coarse and fine granularity and propose a granular analysis method (GAM) with which automatically choosing the suitable granularity to analyze a signal. The experimental results of extracting fine characters of a 2FSK signal show the efficiency of the method.

This work was supported by the Natural Science Foundation of China under Grant No.60135010; partially by the National Grand Fundamental Research 973 Program of China under Grant No. G1998030509.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yao, Y.Y.: Stratified Rough Set and Granular Computing, pp. 800–804. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  2. Dick, S., Kandel, A.: Granular Weights in a Neural Network, pp. 1708–1713. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  3. Lin, T.Y.: Measure Theoty on Granular Fuzzy Sets, pp. 809–813. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  4. Bargiela, A., Pedrycz, W.: Classification and Clustering of Granular Data, pp. 1696–1701. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  5. Dongbo, B., Suo, B., guojie, L.: Principle of Granularity in Clustering and Classification. Chinese J. Computers 25(8), 810–816 (2002)

    Google Scholar 

  6. Lin, T.Y., Hu, X., Louie, E.: A Fast Association Rule Algorithm Based on Bitmap and Granular Computing. In: The IEEE International Conference on Fuzzy, pp. 678–683 (2003)

    Google Scholar 

  7. Pedrycz, W., Bargiela, A.: Granular Clustering: A Granular Signature of Data. IEEE Transactions on Systems Man and Cybernetics—Part B, Cybernetics 32(2), 212–224 (2002)

    Article  Google Scholar 

  8. Zhang, B., Zhang, L.: Theory and Application of Problem Solving. Elsevier Science Publishers B.V., Amsterdam (1992)

    Google Scholar 

  9. Burrus, C.S., et al.: Introduction to wavelets and wavelet transforms. Prentice Hall, New Jersey (1998)

    Google Scholar 

  10. Daubechies, I.: The Wavelets transform, time frequency localization and signal analysis. IEEE Trans. 36(5), 961–1005 (1990)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, L., Tan, Y., Zhang, L. (2005). A Granular Analysis Method in Signal Processing. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539117_72

Download citation

  • DOI: https://doi.org/10.1007/11539117_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28325-6

  • Online ISBN: 978-3-540-31858-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics