Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

NN-Based Damage Detection in Multilayer Composites

  • Conference paper
Advances in Natural Computation (ICNC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3611))

Included in the following conference series:

  • 1592 Accesses

Abstract

The discrete-time system of multilayer composite plate is modeled using neural network (NN) to produce a nonlinear exogenous autoregressive moving-average model (NARMAX). The model is implemented by training a NN with input-output experimental data. Each damaged sample can be modeled by a parameter governed by the propagation behaviors of the NN. A residual signal is evaluated from the difference between the output of the model and that of the real system. A threshold function is used to detect the damaged behavior of the system. The results show that a three-layer neural network can be a general type of and suitable for the nonlinear input-output mapping problems of multilayer composite system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tasi, S.W., Hann, H.T.: Introduction to composite materials. Technic Publishing Company, Westport (1980)

    Google Scholar 

  2. Voyiadjis, G.Z.: Damage in Composite Materials. Elsevier, Amsterdam (1993)

    Google Scholar 

  3. Gadelrab, R.M.: The effect of delamination on the natural frequencies of a laminated composite beam. Journal of Sound and Vibration 197(3), 283–292 (1996)

    Article  Google Scholar 

  4. Osset, Y., Roudolff, F.: Numerical analysis of delamination in multi-layered composite plates. Computational Mechanics 20(1-2), 122–126 (2000)

    Article  Google Scholar 

  5. Frank, P.M.: Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy. Automatica 26, 459–474 (1990)

    Article  MATH  Google Scholar 

  6. Isermann, R.: Process fault diagnosis with parameter estimation methods. In: Proceedings of the IFAC Symposium on Digital Computer Applications to Process Control, Vienna, Austria, pp. 63–68 (1985)

    Google Scholar 

  7. Patton, R.J.: Robust model-based fault diagnosis: the state of the art. In: Proceedings of the IFAC Symposium SAFEPROCESS 1994, Helsinki, Finland, June 1994, pp. 102–110 (1994)

    Google Scholar 

  8. Zhang, J., Roberts, P.D.: Online process fault diagnosis using neural network techniques. Transactions of Institute of Measurement and Control 14, 179–188 (1992)

    Article  Google Scholar 

  9. Wang, H., Daley, S.: An approach to fault detection using nonlinear modeling and estimation. In: Proceedings of the 11th IFAC World Congress, Sydney, Australia, pp. 291–294 (1993)

    Google Scholar 

  10. Leontaritis, I.J., Billings, S.A.: Input-output parametric models for nonlinear systems. International Journal of Control 41(2), 303–344 (1985); Leontaritis, I.J., Billings, S.A.: Input-output parametric models for nonlinear systems part I: deterministic nonlinear systems. International Journal of Control 41(2), 303–328 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Leontaritis, I.J., Billings, S.A.: Input-output parametric models for nonlinear systems part II: Stochastic nonlinear systems. International Journal of Control 41(2), 329–344 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. Billings, S.A., Tsang, K.M.: Spectral analysis of nonlinear systems-Part I. Parametric nonlinear spectral analysis. Journal of Mechanical Systems and Signal processing 3(4), 319–339 (1989)

    Article  MATH  Google Scholar 

  13. Evans, C., Rees, D., Hill, D.: Frequency-domain identification of gas turbine dynamics. IEEE Transactions on Control Systems Technology 6(5), 651–662 (1998)

    Article  Google Scholar 

  14. Liu, H., Guillot, M., Cheng, L.: Active vibration control of airplane structural elements using neural network. In: Active 1999, Fort Lauderdale, Florida, USA, December 2-4 (1999)

    Google Scholar 

  15. Boggs, P.T., Byrd, R.H., Schnabel, R.B.: A stable and efficient algorithm for nonlinear orthogonal distance regression. SIAM Journal on Scientific Computing 8, 1052–1078 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Billings, S.A., Jamaluddin, H.B., Chen, S.: Correlation based model validity tests for nonlinear models. International Journal of Control 44, 235–244 (1986)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wei, Z., Hu, X., Fan, M., Zhang, J., Bi, D. (2005). NN-Based Damage Detection in Multilayer Composites. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539117_84

Download citation

  • DOI: https://doi.org/10.1007/11539117_84

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28325-6

  • Online ISBN: 978-3-540-31858-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics