Abstract
The discrete-time system of multilayer composite plate is modeled using neural network (NN) to produce a nonlinear exogenous autoregressive moving-average model (NARMAX). The model is implemented by training a NN with input-output experimental data. Each damaged sample can be modeled by a parameter governed by the propagation behaviors of the NN. A residual signal is evaluated from the difference between the output of the model and that of the real system. A threshold function is used to detect the damaged behavior of the system. The results show that a three-layer neural network can be a general type of and suitable for the nonlinear input-output mapping problems of multilayer composite system.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tasi, S.W., Hann, H.T.: Introduction to composite materials. Technic Publishing Company, Westport (1980)
Voyiadjis, G.Z.: Damage in Composite Materials. Elsevier, Amsterdam (1993)
Gadelrab, R.M.: The effect of delamination on the natural frequencies of a laminated composite beam. Journal of Sound and Vibration 197(3), 283–292 (1996)
Osset, Y., Roudolff, F.: Numerical analysis of delamination in multi-layered composite plates. Computational Mechanics 20(1-2), 122–126 (2000)
Frank, P.M.: Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy. Automatica 26, 459–474 (1990)
Isermann, R.: Process fault diagnosis with parameter estimation methods. In: Proceedings of the IFAC Symposium on Digital Computer Applications to Process Control, Vienna, Austria, pp. 63–68 (1985)
Patton, R.J.: Robust model-based fault diagnosis: the state of the art. In: Proceedings of the IFAC Symposium SAFEPROCESS 1994, Helsinki, Finland, June 1994, pp. 102–110 (1994)
Zhang, J., Roberts, P.D.: Online process fault diagnosis using neural network techniques. Transactions of Institute of Measurement and Control 14, 179–188 (1992)
Wang, H., Daley, S.: An approach to fault detection using nonlinear modeling and estimation. In: Proceedings of the 11th IFAC World Congress, Sydney, Australia, pp. 291–294 (1993)
Leontaritis, I.J., Billings, S.A.: Input-output parametric models for nonlinear systems. International Journal of Control 41(2), 303–344 (1985); Leontaritis, I.J., Billings, S.A.: Input-output parametric models for nonlinear systems part I: deterministic nonlinear systems. International Journal of Control 41(2), 303–328 (1985)
Leontaritis, I.J., Billings, S.A.: Input-output parametric models for nonlinear systems part II: Stochastic nonlinear systems. International Journal of Control 41(2), 329–344 (1985)
Billings, S.A., Tsang, K.M.: Spectral analysis of nonlinear systems-Part I. Parametric nonlinear spectral analysis. Journal of Mechanical Systems and Signal processing 3(4), 319–339 (1989)
Evans, C., Rees, D., Hill, D.: Frequency-domain identification of gas turbine dynamics. IEEE Transactions on Control Systems Technology 6(5), 651–662 (1998)
Liu, H., Guillot, M., Cheng, L.: Active vibration control of airplane structural elements using neural network. In: Active 1999, Fort Lauderdale, Florida, USA, December 2-4 (1999)
Boggs, P.T., Byrd, R.H., Schnabel, R.B.: A stable and efficient algorithm for nonlinear orthogonal distance regression. SIAM Journal on Scientific Computing 8, 1052–1078 (1987)
Billings, S.A., Jamaluddin, H.B., Chen, S.: Correlation based model validity tests for nonlinear models. International Journal of Control 44, 235–244 (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wei, Z., Hu, X., Fan, M., Zhang, J., Bi, D. (2005). NN-Based Damage Detection in Multilayer Composites. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539117_84
Download citation
DOI: https://doi.org/10.1007/11539117_84
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28325-6
Online ISBN: 978-3-540-31858-3
eBook Packages: Computer ScienceComputer Science (R0)