Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

GSMA: A Structural Matching Algorithm for Schema Matching in Data Warehousing

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3614))

Included in the following conference series:

Abstract

Schema matching, the problem of finding semantic correspondences between elements of source and warehouse schemas, plays a key role in data warehousing. Currently, schema mapping is largely determined manually by domain experts, thus a labor-intensive process. In this paper, we propose a structural matching algorithm based on semantic similarity propagation. Experimental results on several real-world domains are presented, and show that the algorithm discovers semantic mappings with a high degree of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Doan, A., Domingos, P., Halevy, A.: Reconciling Schemas of Disparate Data Sources: A Machine-Learning approach. SIGMOD (2001)

    Google Scholar 

  2. Do, H., Rahm, E.: COMA – A System for flexible combination of schema matching approaches. In: VLDB 2002 (2002)

    Google Scholar 

  3. Embley, D.W., et al.: Multifaceted Exploitation of Metadata for attribute Match Discovery in information Integration. In: WIIW 2001 (2001)

    Google Scholar 

  4. http://anhai.cs.uiuc.edu/archive/summary.type.html

  5. Li, W.S.: SemInt: A Tool for Identifying Attribute Correspondences in Heterogeneous database Using Neural Network. Data & Knowledge Engineering (2001)

    Google Scholar 

  6. Madhavant, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching with Cupid. In: VLDB 2001 (2001)

    Google Scholar 

  7. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A versatile graph matching Algorithm. In: ICDE 2002 (2002)

    Google Scholar 

  8. Mitra, P., Wiederhold, G., Jannink, J.: Semiautomatic integration of knowledge sources. In: FUSION 1999 (1999)

    Google Scholar 

  9. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The VLDB Journal 10(4), 334–350 (2001)

    Article  MATH  Google Scholar 

  10. WordNet: http://www.cogsci.princeton.edu/~wn/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheng, W., Sun, Y. (2005). GSMA: A Structural Matching Algorithm for Schema Matching in Data Warehousing. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3614. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11540007_50

Download citation

  • DOI: https://doi.org/10.1007/11540007_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28331-7

  • Online ISBN: 978-3-540-31828-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics