Abstract
In this paper we present a formalization and proof of Higman’s Lemma in ACL2. We formalize the constructive proof described in [10] where the result is proved using a termination argument justified by the multiset extension of a well-founded relation. To our knowledge, this is the first mechanization of this proof.
This work has been supported by project TIN2004-03884 (Ministerio de Educación y Ciencia, Spain) and FEDER founds.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)
Berghofer, S.: A constructive proof of Higman’s lemma in Isabelle. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 66–82. Springer, Heidelberg (2004)
Coquand, T., Fridlender, D.: A proof of Higman’s lemma by structural induction. Unpublished draft (1993), available at http://www.brics.dk/~daniel/texts/open.ps
Dershowitz, N., Manna, Z.: Proving Termination with Multiset Orderings. Communications of the ACM 22(8), 465–476 (1979)
Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approach. Kluwer Academic Publishers, Dordrecht (2000)
Kaufmann, M., Moore, J.S.: ACL2 Version 2.9 (2005), Homepage: http://www.cs.utexas.edu/users/moore/acl2/
Kaufmann, M., Moore, J.S.: Structured Theory Development for a Mechanized Logic. Journal of Automated Reasoning 26(2), 161–203 (2001)
Martín–Mateos, F.J., Alonso, J.A., Hidalgo, M.J., Ruiz–Reina, J.L.: A Formal Proof of Dickson’s Lemma in ACL2. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 49–58. Springer, Heidelberg (2003)
Medina–Bulo, I., Palomo, F., Alonso, J.A., Ruiz–Reina, J.L.: Verified Computer Algebra in Acl2. In: Buchberger, B., Campbell, J. (eds.) AISC 2004. LNCS, vol. 3249, pp. 171–184. Springer, Heidelberg (2004)
Murthy, C., Russell, J.R.: A Constructive Proof of Higman’s Lemma. In: Fifth annual IEEE Symposium on Logic in Computer Science, pp. 257–267 (1990)
Nash–Williams, C.: On well-quasi-ordering finite trees. Proceedings of the Cambridge Philosophical Society 59, 833–835 (1963)
Perdry, H.: Strong noetherianity: a new constructive proof of Hilbert’s basis theorem. Available at http://perdry.free.fr/StrongNoetherianity.ps
Ruiz–Reina, J.L., Alonso, J.A., Hidalgo, M.J., Martín–Mateos, F.J.: Termination in ACL2 Using Multiset Relations. In: Thirty Five Years of Automating Mathematics. Kluwer Academic Publishers, Dordrecht (2003)
Seisenberger, M.: An Inductive Version of Nash-Williams’ Minimal-Bad-Sequence Argument for Higman’s Lemma. In: Callaghan, P., Luo, Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 233–242. Springer, Heidelberg (2002)
Simpson, S.G.: Ordinal numbers and the Hilbert basis theorem. Journal of Symbolic Logic 53(3), 961–974 (1988)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Martín-Mateos, F.J., Ruiz-Reina, J.L., Alonso, J.A., Hidalgo, M.J. (2005). Proof Pearl: A Formal Proof of Higman’s Lemma in ACL2. In: Hurd, J., Melham, T. (eds) Theorem Proving in Higher Order Logics. TPHOLs 2005. Lecture Notes in Computer Science, vol 3603. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11541868_23
Download citation
DOI: https://doi.org/10.1007/11541868_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28372-0
Online ISBN: 978-3-540-31820-0
eBook Packages: Computer ScienceComputer Science (R0)