Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Algebras as Knowledge Structures

  • Conference paper
Mathematical Foundations of Computer Science 2005 (MFCS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3618))

  • 1403 Accesses

Abstract

We start investigating set algebras from a knowledge theoretical point of view. To this end, we suit hybrid logic to the context of knowledge. The common modal approach is extended in this way, which gives us the necessary expressive power. The main issues of the paper are a completeness and a decidability result for the arising logic of knowledge on algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  2. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about Systems. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Dabrowski, A., Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowledge. Annals of Pure and Applied Logic 78, 73–110 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Georgatos, K.: Knowledge theoretic properties of topological spaces. In: Masuch, M., Pólos, L. (eds.) Logic at Work 1992. LNCS, vol. 808, pp. 147–159. Springer, Heidelberg (1994)

    Google Scholar 

  5. Georgatos, K.: Knowledge on treelike spaces. Studia Logica 59, 271–301 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Weiss, M.A., Parikh, R.: Completeness of certain bimodal logics for subset spaces. Studia Logica 71, 1–30 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Heinemann, B.: A hybrid logic of knowledge supporting topological reasoning. In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, pp. 181–195. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Bauer, H.: Measure and Integration Theory. de Gruyter Studies in Mathematics, vol. 26. Walter de Gruyter, New York (2001)

    MATH  Google Scholar 

  9. Wu, Y., Weihrauch, K.: A computable version of the Daniell-Stone Theorem on integration and linear functionals. In: Brattka, V., Staiger, L., Weihrauch, K. (eds.) CCA 2004, Informatik Berichte, Hagen, Germany, vol. 320, pp. 195–207 (2004)

    Google Scholar 

  10. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. In: Cambridge Tracts in Theoretical Computer Science, vol. 53, Cambridge University Press, Cambridge (2001)

    Google Scholar 

  11. Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic manifesto. Logic Journal of the IGPL 8, 339–365 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. McKinsey, J.C.C.: A solution to the decision problem for the Lewis systems S2 and S4, with an application to topology. Journal of Symbolic Logic 6, 117–141 (1941)

    Article  MathSciNet  Google Scholar 

  13. Aiello, M., van Benthem, J., Bezhanishvili, G.: Reasoning about space: The modal way. Journal of Logic and Computation 13, 889–920 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gabelaia, D.: Modal definability in topology. Master’s thesis, ILLC, Universiteit van Amsterdam (2001)

    Google Scholar 

  15. Heinemann, B.: Axiomatizing modal theories of subset spaces (an example of the power of hybrid logic). In: HyLo@LICS, Proceedings, Copenhagen, Denmark, 69–83 (2002)

    Google Scholar 

  16. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)

    MATH  Google Scholar 

  17. Heinemann, B.: Extended canonicity of certain topological properties of set spaces. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 135–149. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heinemann, B. (2005). Algebras as Knowledge Structures. In: Jȩdrzejowicz, J., Szepietowski, A. (eds) Mathematical Foundations of Computer Science 2005. MFCS 2005. Lecture Notes in Computer Science, vol 3618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11549345_41

Download citation

  • DOI: https://doi.org/10.1007/11549345_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28702-5

  • Online ISBN: 978-3-540-31867-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics