Abstract
We start investigating set algebras from a knowledge theoretical point of view. To this end, we suit hybrid logic to the context of knowledge. The common modal approach is extended in this way, which gives us the necessary expressive power. The main issues of the paper are a completeness and a decidability result for the arising logic of knowledge on algebras.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press, Cambridge (1995)
Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about Systems. Cambridge University Press, Cambridge (2000)
Dabrowski, A., Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowledge. Annals of Pure and Applied Logic 78, 73–110 (1996)
Georgatos, K.: Knowledge theoretic properties of topological spaces. In: Masuch, M., Pólos, L. (eds.) Logic at Work 1992. LNCS, vol. 808, pp. 147–159. Springer, Heidelberg (1994)
Georgatos, K.: Knowledge on treelike spaces. Studia Logica 59, 271–301 (1997)
Weiss, M.A., Parikh, R.: Completeness of certain bimodal logics for subset spaces. Studia Logica 71, 1–30 (2002)
Heinemann, B.: A hybrid logic of knowledge supporting topological reasoning. In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, pp. 181–195. Springer, Heidelberg (2004)
Bauer, H.: Measure and Integration Theory. de Gruyter Studies in Mathematics, vol. 26. Walter de Gruyter, New York (2001)
Wu, Y., Weihrauch, K.: A computable version of the Daniell-Stone Theorem on integration and linear functionals. In: Brattka, V., Staiger, L., Weihrauch, K. (eds.) CCA 2004, Informatik Berichte, Hagen, Germany, vol. 320, pp. 195–207 (2004)
Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. In: Cambridge Tracts in Theoretical Computer Science, vol. 53, Cambridge University Press, Cambridge (2001)
Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic manifesto. Logic Journal of the IGPL 8, 339–365 (2000)
McKinsey, J.C.C.: A solution to the decision problem for the Lewis systems S2 and S4, with an application to topology. Journal of Symbolic Logic 6, 117–141 (1941)
Aiello, M., van Benthem, J., Bezhanishvili, G.: Reasoning about space: The modal way. Journal of Logic and Computation 13, 889–920 (2003)
Gabelaia, D.: Modal definability in topology. Master’s thesis, ILLC, Universiteit van Amsterdam (2001)
Heinemann, B.: Axiomatizing modal theories of subset spaces (an example of the power of hybrid logic). In: HyLo@LICS, Proceedings, Copenhagen, Denmark, 69–83 (2002)
Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)
Heinemann, B.: Extended canonicity of certain topological properties of set spaces. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 135–149. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Heinemann, B. (2005). Algebras as Knowledge Structures. In: Jȩdrzejowicz, J., Szepietowski, A. (eds) Mathematical Foundations of Computer Science 2005. MFCS 2005. Lecture Notes in Computer Science, vol 3618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11549345_41
Download citation
DOI: https://doi.org/10.1007/11549345_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28702-5
Online ISBN: 978-3-540-31867-5
eBook Packages: Computer ScienceComputer Science (R0)