Abstract
We study simple greedy approximation algorithms for general class of integer packing problems. We provide a novel analysis based on the duality theory of linear programming. This enables to significantly improve on the approximation ratios of these greedy methods, and gives a unified analysis of greedy for many packing problems. We show matching lower bounds on the ratios of such greedy methods. Applications to some specific problems, including mechanism design for combinatorial auctions, are also shown.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aharoni, R., Erdös, P., Linial, N.: Optima of dual linear programs. Combinatorica 8, 13–20 (1988)
Archer, A., Papadimitriou, C.H., Talwar, K., Tardos, É.: An approximate truthful mechanism for combinatorial auctions with single parameter agents. In: Proc. 14th ACM-SIAM Symposium on Discrete Algorithms, SODA (2003)
Azar, Y., Regev, O.: Strongly polynomial algorithms for the unsplittable flow problem. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, p. 15. Springer, Heidelberg (2001)
Bartal, Y., Gonen, R., Nisan, N.: Incentive Compatible Multi-Unit Combinatorial Auctions. In: Proc. 9th conference on Theoretical Aspects of Rationality and Knowledge (TARK), Bloomington, IN, USA (June 2003)
Berman, P., Krysta, P.: Optimizing misdirection. In: Proc. 14th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 192–201 (2003)
Briest, P., Krysta, P., Vöcking, B.: Approximation Techniques for Utilitarian Mechanism Design. In: Proc. 37th ACM Symposium on Theory of Computing, STOC (2005)
Chekuri, C., Khanna, S.: Edge-disjoint paths revisited. In: Proc. 14th ACM-SIAM Symposium on Discrete Algorithms, SODA (2003)
Chvátal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4, 233–235 (1979)
Dobson, G.: Worst-case analysis of greedy heuristics for integer programming with non-negative data. Mathematics of Operations Research 7, 515–531 (1982)
Gonen, R., Lehmann, D.J.: Optimal solutions for multi-unit combinatorial auctions: branch and bound heuristics. In: Proc. 2nd ACM Conference on Electronic Commerce, EC (2000)
Gonen, R., Lehmann, D.J.: Linear Programming Helps Solve Large Multi-Unit Combinatorial Auctions. In: Proceedings of INFORMS 2001 (November 2001)
Guruswami, V., Khanna, S., Rajagopalan, R., Shepherd, B., Yannakakis, M.: Near-optimal hardness results and approximation algorithms for edge-disjoint paths and related problems. In: Proc. 31st ACM Symposium on Theory of Computing, STOC (1999)
Halldórsson, M.M., KratochvÃl, J., Telle, J.A.: Independent sets with domination constraints. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, p. 176. Springer, Heidelberg (1998)
Halldórsson, M.M.: A survey on independent set approximations. In: Jansen, K., Rolim, J.D.P. (eds.) APPROX 1998. LNCS, vol. 1444, pp. 1–14. Springer, Heidelberg (1998)
Halldórsson, M.M.: Approximations of Weighted Independent Set and Hereditary Subset Problems. Journal of Graph Algorithms and Applications 4(1), 1–16 (2000)
Hardy, G., Littlewood, J.E., Polya, G.: Inequalities, 2nd edn. Cambridge Univ. Press, Cambridge (1997)
Hastad, J.: Clique is hard to approximate within n 1 − ε. In: Proc. IEEE FOCS (1996)
Hazan, E., Safra, S., Schwartz, O.: On the hardness of approximating k-dimensional matching. In: Proc. APPROX. LNCS, Springer, Heidelberg (2003)
Hochbaum, D.S.: Efficient bounds for the stable set, vertex cover, and set packing problems. Discrete Applied Mathematics 6, 243–254 (1983)
Kleinberg, J.: Approximation algorithms for disjoint paths problems. PhD thesis, MIT (1996)
Kolliopoulos, S.G., Stein, C.: Approximating disjoint-path problems using greedy algorithms and packing integer programs. In: Bixby, R.E., Boyd, E.A., RÃos-Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, pp. 153–162. Springer, Heidelberg (1998)
Kolman, P.: A note on the greedy algorithm for the unsplittable flow problem. Information Processing Letters 88(3), 101–105 (2003)
Kolman, P., Scheideler, C.: Improved bounds for the unsplittable flow problem. In: Proc. 13th ACM-SIAM Symposium on Discrete Algorithms, SODA (2002)
Lehmann, D., Ita O’Callaghan, L., Shoham, Y.: Truth revelation in rapid, approximately efficient combinatorial auctions. In: Proc. 1st ACM Conference on Electronic Commerce, EC (1999); Journal version. Journal of the ACM 49(5), 577–602 (2002)
Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Mathematics 13, 383–390 (1975)
Mu’alem, A., Nisan, N.: Truthful Approximation Mechanisms for Restricted Combinatorial Auctions. In: Proc. 18th National AAAI Conference on Artificial Intelligence (2002)
Raghavan, P.: Probabilistic construction of deterministic algorithms: Approximating packing integer programs. Journal of Computer and System Sciences 37, 130–143 (1988)
Raghavan, P., Thompson, C.D.: Randomized rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica 7, 365–374 (1987)
Rajagopalan, S., Vazirani, V.V.: Primal-dual RNC approximation algorithms for set cover and covering integer programs. SIAM Journal on Computing 28(2) (1998)
Srinivasan, A.: A extension of the Lovász Local Lemma and its applications to integer programming. In: Proc. 7th ACM-SIAM Symposium on Discrete Algorithms, SODA (1996)
Srinivasan, A.: Improved Approximation Guarantees for Packing and Covering Integer Programs. SIAM Journal on Computing 29, 648–670 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Krysta, P. (2005). Greedy Approximation via Duality for Packing, Combinatorial Auctions and Routing. In: JÈ©drzejowicz, J., Szepietowski, A. (eds) Mathematical Foundations of Computer Science 2005. MFCS 2005. Lecture Notes in Computer Science, vol 3618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11549345_53
Download citation
DOI: https://doi.org/10.1007/11549345_53
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28702-5
Online ISBN: 978-3-540-31867-5
eBook Packages: Computer ScienceComputer Science (R0)