Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automatic Foreground Propagation in Image Sequences for 3D Reconstruction

  • Conference paper
Pattern Recognition (DAGM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3663))

Included in the following conference series:

Abstract

In this paper we introduce a novel method for automatic propagation of foreground objects in image sequences. Our method is based on a combination of the mean-shift operator with the well known intelligent scissors technique. It is effective due to the fact that the images are captured with high overlap, resulting in highly redundant scene information. The algorithm requires an initial segmentation of one image of the sequence as an input. In each consecutive image the segmentation of the previous image is taken as an initialization and the propagation procedure proceeds along four major steps. Each step refines the segmentation of the foreground object and the algorithm converges until all images of the sequence are processed. We demonstrate the effectiveness of our approach on several datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In: International Conference of Computer Vision, Vancouver, Canada, July 2001, vol. 1, pp. 105–112 (2001)

    Google Scholar 

  2. Comaniciu, D., Meer, P.: Mean shift analysis and applications. In: International Conference of Computer Vision, Corfu, Greece, June 1999, vol. 2, pp. 1197–1203 (1999)

    Google Scholar 

  3. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)

    Article  Google Scholar 

  4. Dijkstra, E.W.: A note on two problems in connexion with graphs. In: Numerische Mathematik, Amsterdam, The Netherlands. Mathematical Centre, vol. 1, pp. 269–271 (1959)

    Google Scholar 

  5. Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on Information Theory 21(1), 32–40 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  6. Horn, B.: Relative orientation. International Journal of Computer Vision 4(1), 59–78 (1990)

    Article  MathSciNet  Google Scholar 

  7. Mortenson, E.N., Barrett, W.: Intelligent scissors for image composition. Graphical Models and Image Processing 60(5), 349–384 (1998)

    Article  Google Scholar 

  8. Nister, D.: An efficient solution to the five-point relative pose problem. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(6), 756–777 (2004)

    Article  Google Scholar 

  9. Rother, C., Kolmogorov, V., Blake, A.: Grabcut - interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics 23(3), 309–314 (2004)

    Article  Google Scholar 

  10. Ziegler, R., Matusik, W., Pfister, H., McMillan, L.: 3d reconstruction using labeled image regions. In: Eurographics/ACM SIGGRAPH symposium on Geometry processing, Granada, Spain, September 2003, vol. 1, pp. 248–259 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sormann, M., Zach, C., Bauer, J., Karner, K., Bischof, H. (2005). Automatic Foreground Propagation in Image Sequences for 3D Reconstruction. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds) Pattern Recognition. DAGM 2005. Lecture Notes in Computer Science, vol 3663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550518_12

Download citation

  • DOI: https://doi.org/10.1007/11550518_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28703-2

  • Online ISBN: 978-3-540-31942-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics