Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Rapid Online Learning of Objects in a Biologically Motivated Recognition Architecture

  • Conference paper
Pattern Recognition (DAGM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3663))

Included in the following conference series:

Abstract

We present an approach for the supervised online learning of object representations based on a biologically motivated architecture of visual processing. We use the output of a recently developed topographical feature hierarchy to provide a view-based representation of three-dimensional objects using a dynamical vector quantization approach. For a simple short-term object memory model we demonstrate real-time online learning of 50 complex-shaped objects within three hours. Additionally we propose some modifications of learning vector quantization algorithms that are especially adapted to the task of online learning and capable of effectively reducing the representational effort in a transfer from short-term to long-term memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arsenio, A.: Developmental learning on a humanoid robot. In: Proc. Int. Joint Conf. Neur. Netw., Budapest, pp. 3167–3172 (2004)

    Google Scholar 

  2. Bekel, H., Bax, I., Heidemann, G., Ritter, H.: Adaptive Computer Vision: Online Learning for Object Recognition. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 447–454. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Fritzke, B.: A growing neural gas network learns topologies. In: Tesauro, G., et al. (eds.) Adv. Neur. Inf. Proc. Systems., vol. 7, pp. 625–632. MIT Press, Cambridge (1995)

    Google Scholar 

  4. Fukushima, K.: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 36(4), 193–202 (1980)

    Article  MATH  Google Scholar 

  5. Guedalia, I.D., London, M., Werman, M.: An on-line agglomerative clustering method for non-stationary data. Neural Computation 11(2), 521–540 (1999)

    Article  Google Scholar 

  6. Kalinke, T., von Seelen, W.: Entropie als Mass des lokalen Informationsgehalts in Bildern zur Realisierung einer Aufmerksamkeitssteuerung. Mustererkennung, Jähne et al., pp. 627–634 (1996)

    Google Scholar 

  7. Kohonen, T.: Self-Organizing and Associative Memory, 3rd edn. Springer Series in Information Sciences. Springer, Heidelberg (1989)

    Google Scholar 

  8. Steels, L., Kaplan, F.: AIBO’s first words: The social learning of language and meaning. Evolution of Communication 4(1), 3–32 (2001)

    Article  Google Scholar 

  9. Wersing, H., Körner, E.: Learning Optimized Features for Hierarchical Models of Invariant Object Recognition. Neural Computation 15(7), 1559–1588 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kirstein, S., Wersing, H., Körner, E. (2005). Rapid Online Learning of Objects in a Biologically Motivated Recognition Architecture. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds) Pattern Recognition. DAGM 2005. Lecture Notes in Computer Science, vol 3663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550518_38

Download citation

  • DOI: https://doi.org/10.1007/11550518_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28703-2

  • Online ISBN: 978-3-540-31942-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics