Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3697))

Included in the following conference series:

  • 3609 Accesses

Abstract

As shown in the bibliography, training an ensemble of networks is an interesting way to improve the performance. The two key factors to design an ensemble are how to train the individual networks and how to combine the different outputs of the nets. In this paper, we focus on the combination methods. We study the performance of fourteen different combination methods for ensembles of the type “simple ensemble” (SE) and “decorrelated” (DECO). In the case of the “SE” and low number of networks in the ensemble, the method Zimmermann gets the best performance. When the number of networks is in the range of 9 and 20 the weighted average is the best alternative. Finally, in the case of the ensemble “DECO” the best performing method is averaging.

This research was supported by the project MAPACI TIC2002-02273 of CICYT in Spain.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/11550907_163 .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tumer, K., Ghosh, J.: Error correlation and error reduction in ensemble classifiers. Connection Science 8(3,4), 385–404 (1996)

    Article  Google Scholar 

  2. Raviv, Y., Intrator, N.: Bootstrapping with Noise: An Effective Regularization Technique. Connection Science 8(3,4), 355–372 (1996)

    Article  Google Scholar 

  3. Fernandez-Redondo, M., Hernández-Espinosa, C., Torres-Sospedra, J.: Classification by Multilayer Feedforward ensembles. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3173, pp. 852–857. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Verikas, A., Lipnickas, A., Malmqvist, K., Bacauskiene, M., Gelzinis, A.: Soft Combination of neural classifiers: A comparative study. Pattern Recognition Letters 20, 429–444 (1999)

    Article  Google Scholar 

  5. Rosen, B.: Ensemble Learning Using Decorrelated Neural Networks. Connection Science 8(3,4), 373–383 (1996)

    Article  Google Scholar 

  6. Xu, L., Krzyzak, A., SUen, C.Y.: Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans. on Systems, Man and Cybernetics 22(3), 418–435 (1992)

    Article  Google Scholar 

  7. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. Advances in Neural Information Processing Systems 7, 231–238 (1995)

    Google Scholar 

  8. Zymmermann, H.J., Zysno, P.: Decision and evaluations by hierarchical aggregation of information. Fuzzy Sets and Systems 10(3), 243–260 (1984)

    Article  Google Scholar 

  9. Jimenez, D.: Dynamically Weighted Ensemble Neural Network for Classification. IEEE World Congress on Computational Intelligence 1, 753–756 (1998)

    Google Scholar 

  10. Wanas, N.M., Kamel, M.S.: Decision Fusion in Neural Network Ensembles. In: International Joint Conference on Neural Networks, vol. 4, pp. 2952–2957 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Torres-Sospedra, J., Fernández-Redondo, M., Hernández-Espinosa, C. (2005). Combination Methods for Ensembles of MF. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550907_22

Download citation

  • DOI: https://doi.org/10.1007/11550907_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28755-1

  • Online ISBN: 978-3-540-28756-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics