Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Tabu Search Based Method for Minimum Sum of Squares Clustering

  • Conference paper
Pattern Recognition and Data Mining (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3686))

Included in the following conference series:

Abstract

In this article, the metaheuristic algorithm, tabu search, is proposed to deal with the clustering problem under the criterion of minimum sum of squares clustering. The presented method integrates four moving operations and mutation operation into tabu search. Its superiority over local search clustering algorithms and another tabu clustering approach is extensively demonstrated for artificial and real life data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jain, A.K., Dubes, R.: Algorithms for clustering data. Prentice-Hall, New Jersey (1988)

    MATH  Google Scholar 

  2. Selim, S.Z., Ismail, M.A.: K-means-type algorithm: generalized convergence theorem and characterization of local optimality. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 81–87 (1984)

    Article  MATH  Google Scholar 

  3. Duda, R.O., Hart, P.E.: Pattern classification and scene analysis. Wiley, New York (1972)

    Google Scholar 

  4. Ismail, M.A., Selim, S.Z., Arora, S.K.: Efficient clustering of multidimensional data. In: Proceedings of 1984 IEEE International Confference on System, Man and Cybernetics, Halifax, pp. 120–123 (1984)

    Google Scholar 

  5. Ismail, M.A., Kamel, M.S.: Multidimensional data clustering utilizing hybrid search strategies. Pattern Recognition 22, 75–89 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Zhang, Q.W., Boyle, R.D.: A new clustering algorithm with multiple runs of iterative procedures. Pattern Recognition 24, 835–848 (1991)

    Article  Google Scholar 

  7. Murthy, C.A., Chowdhury, N.: In search of optimal clusters using genetic algorithms. Pattern Recognition Letters 17, 825–832 (1996)

    Article  Google Scholar 

  8. Glover, F., Laguna, M.: Tabu search. Kluwer Academic Publishers, Boston (1997)

    MATH  Google Scholar 

  9. Al-sultan, K.S.: A tabu search approach to the clustering problem. Pattern Recognition 28, 1443–1451 (1995)

    Article  Google Scholar 

  10. Chelouah, R., Siarry, P.: A hybrid method combining continuous tabu search and Nelder–Mead simplex algorithms for the global optimization of multiminima functions. European Journal of Operational Research 161, 636–654 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Schaffer, J.D., Caruana, R.A., Eshelman, L.J., Das, R.: A study of control parameters for genetic algorithms. In: Proceedings of the 3rd International Conference on Genetic Algorithms, pp. 51–60. Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

  12. Pal, S.K., Majumder, D.D.: Fuzzy sets and decision making approaches in vowel and speaker recognition. IEEE Transactions on System, Man and Cybernetics. SMC 1977, 625–629 (1977)

    Google Scholar 

  13. Spath, H.: Cluster analysis algorithms. Wiley, Chichester (1980)

    Google Scholar 

  14. Chien, Y.T.: Interactive Pattern Recognition. Marcel-Dekker, New York (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Y., Wang, L., Chen, K. (2005). A Tabu Search Based Method for Minimum Sum of Squares Clustering. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Data Mining. ICAPR 2005. Lecture Notes in Computer Science, vol 3686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11551188_27

Download citation

  • DOI: https://doi.org/10.1007/11551188_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28757-5

  • Online ISBN: 978-3-540-28758-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics