Abstract
Hybrid metaheuristics have received considerable interest in recent years. Since several years ago, a wide variety of hybrid approaches have been proposed in the literature including the new GA-EDA approach. We have design and implemented an extension to this GA-EDA approach, based on statistical significance tests. This approach had allowed us to make an study of the balance of diversification (exploration) and intensification (exploitation) in Genetic Algorithms and Estimation of Distribution Algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bachelet, V., Talbi, E.: Cosearch: A co-evolutionary metaheuritics. In: Proceedings of Congress on Evolutionary Computation CEC 2000, pp. 1550–1557 (2000)
Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys 35(3), 268–308 (2003)
Branin, F.K.: A widely convergent method for finding multiple solutions of simultaneous nonlinear equations. IBM Journal of Research and Development, 504–522 (1972)
Denzinger, J., Offerman, T.: On cooperation between evolutionary algorithms and other search paradigms. In: Proceedings of Congress on Evolutionary Computation CEC– 1999, pp. 2317–2324 (1999)
Foccaci, F., Laburthe, F., Lodi, A.: Local search and constraint programming. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics. International Series in Operations Research and Management Science, vol. 57, Kluwer Academic Publishers, Norwell
Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht (1997)
Hao, J., Lardeux, F., Saubion, F.: A hybrid genetic algorithm for the satisfiability problem. In: Proceedings of the First International Workshop on Heuristics, Beijing (2002)
Herrera, F., Lozano, M.: Gradual distributed real-coded genetic algorithms. IEEE Transactions on Evolutionary Computation 4(1) (2000)
Holland, J.H.: Adaption in natural and artificial systems. The University of Michigan Press, Ann Harbor (1975)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)
Larrañaga, P., Etxeberria, R., Lozano, J.A., Peña, J.M.: Optimization in continuous domains by learning and simulation of Gaussian networks. In: Wu, A.S. (ed.) Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program, pp. 201–204 (2000)
Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (2001)
Lin, F.T., Kao, C.Y., Hsu, C.C.: Incorporating genetic algorithms into simulated annealing. Proceedings of the Fourth International Symposium on Artificial Intelligence, 290–297 (1991)
Martin, O.C., Otto, S.W.: Combining simulated annealing with local search heuristics. Annals of Operations Research 63, 57–75 (1996)
Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Englewood Cliffs (1982)
Peña, J.M., Robles, V., Larrañaga, P., Herves, V., Rosales, F., Pérez, M.S.: GA-EDA: Hybrid evolutionary algorithm using genetic and estimation of distribution algorithms. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 361–371. Springer, Heidelberg (2004)
Robles, V., Peña, J.M., Larrañaga, P., Pérez, M.S., Herves, V.: GA-EDA: A new hybrid cooperative search evolutionary algorithm. In: Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.) Towars a New Evolutionary Computation. Advances in Estimation of Distribution Algorithms. Springer, Heidelberg (2005) (in press)
Robles, V., Pérez, M.S., Herves, V., Peña, J.M., Larrañaga, P.: Parallel stochastic search for protein secondary structure prediction, Czestochowa, Poland. LNCS (2003)
Talbi, E.-G.: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8(5), 541–564 (2002)
Törn, A., Ali, M.M., Viitanen, S.: Stochastic global optimization: Problem classes and solution techniques. Journal of Global Optimization 14 (1999)
Toulouse, M., Crainic, T., Sansó, B.: An experimental study of the systemic behavior of cooperative search algorithms. In: Osman., I., Voß, S., Martello, S., Roucairol, C. (eds.) In Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, vol. 26, pp. 373–392. Kluwer Academic Publishers, Dordrecht (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Robles, V., Peña, J.M., Pérez, M.S., Herrero, P., Cubo, O. (2005). Extending the GA-EDA Hybrid Algorithm to Study Diversification and Intensification in GAs and EDAs. In: Famili, A.F., Kok, J.N., Peña, J.M., Siebes, A., Feelders, A. (eds) Advances in Intelligent Data Analysis VI. IDA 2005. Lecture Notes in Computer Science, vol 3646. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552253_31
Download citation
DOI: https://doi.org/10.1007/11552253_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28795-7
Online ISBN: 978-3-540-31926-9
eBook Packages: Computer ScienceComputer Science (R0)