Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improved Image Coding with Classified VQ and Side-Match VQ

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3683))

  • 1063 Accesses

Abstract

A new scheme for vector quantization (VQ) is proposed in this paper. We employ side-match and classified criteria for designing VQ codebooks to combat blocking effects induced from high compression rates, and then we use the proposed algorithm to improve the reconstructed image quality. Simulation results demonstrate the better image quality to compare with that produced from conventional schemes objectively and subjectively, at the cost of reasonable encoding complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jayant, N.S., Johnston, J.D., Safranek, R.J.: Signal compression based on models of human perception. Proc. IEEE 81(10), 1385–1422 (1993)

    Article  Google Scholar 

  2. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Kluwer Academic Publishers, Boston (1992)

    MATH  Google Scholar 

  3. Linde, Y., Buzo, A., Gray, R.M.: An algorithm for vector quantizer design. IEEE Trans. Commun. 28(1), 84–95 (1980)

    Article  Google Scholar 

  4. Quweider, M.K., Salari, E.: Efficient classification and codebook design for CVQ. IEE Proc. Vision, Image and Signal Process. 143(6), 344–352 (1996)

    Article  Google Scholar 

  5. Chang, R.F., Chen, W.T.: Image coding using variable-rate side-match finitestate vector quantization. IEEE Trans. Image Process. 2(1), 104–108 (1993)

    Article  MathSciNet  Google Scholar 

  6. Lu, Z.M., Pan, J.S., Sun, S.H.: Image coding based on classified side-match vector quantization. IEICE Trans. Inf. & Syst. E83-D(4), 2189–2192 (2000)

    Google Scholar 

  7. Farvardin, N.: A study of vector quantization for noisy channels. IEEE Trans. Inform. Theory 36(4), 799–809 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, HC., Yen, K.K., Huang, YH., Pan, JS., Huang, KC. (2005). Improved Image Coding with Classified VQ and Side-Match VQ. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2005. Lecture Notes in Computer Science(), vol 3683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553939_59

Download citation

  • DOI: https://doi.org/10.1007/11553939_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28896-1

  • Online ISBN: 978-3-540-31990-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics