Abstract
We present a sound and complete tableau calculus for the class of regular grammar logics. Our tableau rules use a special feature called automaton-labelled formulae, which are similar to formulae of automaton propositional dynamic logic. Our calculus is cut-free and has the analytic superformula property so it gives a decision procedure. We show that the known EXPTIME upper bound for regular grammar logics can be obtained using our tableau calculus. We also give an effective Craig interpolation lemma for regular grammar logics using our calculus.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia Logica 69, 5–40 (2001)
Baldoni, M.: Normal Multimodal Logics: Automatic Deduction and Logic Programming Extension. PhD thesis, Dip. di Inf., Univ. degli Studi di Torino, Italy (1998)
Baldoni, M., Giordano, L., Martelli, A.: A tableau for multimodal logics and some (un)decidability results. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS, vol. 1397, pp. 44–59. Springer, Heidelberg (1998)
Demri, S.: The complexity of regularity in grammar logics and related modal logics. Journal of Logic and Computation 11(6), 933–960 (2001) (see also the long version)
Demri, S., de Nivelle, H.: Deciding regular grammar logics with converse through first-order logic. Journal of Logic, Language and Information (2005) (to appear)
Donini, F., Massacci, F.: EXPTIME tableaux for \(\mathcal{ALC}\). Artificial Intelligence 124, 87–138 (2000)
Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge (1995)
Fariñas del Cerro, L., Penttonen, M.: Grammar logics. Logique et Analyse 121-122, 123–134 (1988)
Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, et al (eds.) Handbook of Tableau Methods, pp. 297–396. Kluwer, Dordrecht (1999)
Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
Horrocks, I., Sattler, U.: Decidability of SHIQ with complex role inclusion axioms. Artificial Intelligence 160(1-2), 79–104 (2004)
Kracht, M.: Reducing modal consequence relations. JLC 11(6), 879–907 (2001)
Marx, M., Venema, Y.: Multi-dimensional Modal Logic. Kluwer, Dordrecht (1997)
Mateescu, A., Salomaa, A.: Formal languages: an introduction and a synopsis. In: Handbook of Formal Languages, vol. 1, pp. 1–40. Springer, Heidelberg (1997)
Meyer, J.-J.C., van der Hoek, W.: Epistemic Logic for Computer Science and Artificial Intelligence. Cambridge University Press, Cambridge (1995)
Nguyen, L.A.: Analytic tableau systems and interpolation for the modal logics KB, KDB, K5, KD5. Studia Logica 69(1), 41–57 (2001)
Nguyen, L.A.: Analytic tableau systems for propositional bimodal logics of knowledge and belief. In: Egly, U., FermĂ¼ller, C. (eds.) TABLEAUX 2002. LNCS, vol. 2381, pp. 206–220. Springer, Heidelberg (2002)
Rautenberg, W.: Modal tableau calculi and interpolation. JPL 12, 403–423 (1983)
van Benthem, J.: Correspondence theory. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. II, pp. 167–247. Reidel, Dordrecht (1984)
Wessel, M.: Obstacles on the way to qualitative spatial reasoning with description logics: Some undecidability results. In: Description Logics (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Goré, R., Nguyen, L.A. (2005). A Tableau Calculus with Automaton-Labelled Formulae for Regular Grammar Logics. In: Beckert, B. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2005. Lecture Notes in Computer Science(), vol 3702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11554554_12
Download citation
DOI: https://doi.org/10.1007/11554554_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28931-9
Online ISBN: 978-3-540-31822-4
eBook Packages: Computer ScienceComputer Science (R0)