Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Tableau Calculus with Automaton-Labelled Formulae for Regular Grammar Logics

  • Conference paper
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3702))

Abstract

We present a sound and complete tableau calculus for the class of regular grammar logics. Our tableau rules use a special feature called automaton-labelled formulae, which are similar to formulae of automaton propositional dynamic logic. Our calculus is cut-free and has the analytic superformula property so it gives a decision procedure. We show that the known EXPTIME upper bound for regular grammar logics can be obtained using our tableau calculus. We also give an effective Craig interpolation lemma for regular grammar logics using our calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Sattler, U.: An overview of tableau algorithms for description logics. Studia Logica 69, 5–40 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baldoni, M.: Normal Multimodal Logics: Automatic Deduction and Logic Programming Extension. PhD thesis, Dip. di Inf., Univ. degli Studi di Torino, Italy (1998)

    Google Scholar 

  3. Baldoni, M., Giordano, L., Martelli, A.: A tableau for multimodal logics and some (un)decidability results. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS, vol. 1397, pp. 44–59. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Demri, S.: The complexity of regularity in grammar logics and related modal logics. Journal of Logic and Computation 11(6), 933–960 (2001) (see also the long version)

    Article  MATH  MathSciNet  Google Scholar 

  5. Demri, S., de Nivelle, H.: Deciding regular grammar logics with converse through first-order logic. Journal of Logic, Language and Information (2005) (to appear)

    Google Scholar 

  6. Donini, F., Massacci, F.: EXPTIME tableaux for \(\mathcal{ALC}\). Artificial Intelligence 124, 87–138 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  8. Fariñas del Cerro, L., Penttonen, M.: Grammar logics. Logique et Analyse 121-122, 123–134 (1988)

    Google Scholar 

  9. Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, et al (eds.) Handbook of Tableau Methods, pp. 297–396. Kluwer, Dordrecht (1999)

    Google Scholar 

  10. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  11. Horrocks, I., Sattler, U.: Decidability of SHIQ with complex role inclusion axioms. Artificial Intelligence 160(1-2), 79–104 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kracht, M.: Reducing modal consequence relations. JLC 11(6), 879–907 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Marx, M., Venema, Y.: Multi-dimensional Modal Logic. Kluwer, Dordrecht (1997)

    MATH  Google Scholar 

  14. Mateescu, A., Salomaa, A.: Formal languages: an introduction and a synopsis. In: Handbook of Formal Languages, vol. 1, pp. 1–40. Springer, Heidelberg (1997)

    Google Scholar 

  15. Meyer, J.-J.C., van der Hoek, W.: Epistemic Logic for Computer Science and Artificial Intelligence. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  16. Nguyen, L.A.: Analytic tableau systems and interpolation for the modal logics KB, KDB, K5, KD5. Studia Logica 69(1), 41–57 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nguyen, L.A.: Analytic tableau systems for propositional bimodal logics of knowledge and belief. In: Egly, U., FermĂ¼ller, C. (eds.) TABLEAUX 2002. LNCS, vol. 2381, pp. 206–220. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Rautenberg, W.: Modal tableau calculi and interpolation. JPL 12, 403–423 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. van Benthem, J.: Correspondence theory. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. II, pp. 167–247. Reidel, Dordrecht (1984)

    Google Scholar 

  20. Wessel, M.: Obstacles on the way to qualitative spatial reasoning with description logics: Some undecidability results. In: Description Logics (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goré, R., Nguyen, L.A. (2005). A Tableau Calculus with Automaton-Labelled Formulae for Regular Grammar Logics. In: Beckert, B. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2005. Lecture Notes in Computer Science(), vol 3702. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11554554_12

Download citation

  • DOI: https://doi.org/10.1007/11554554_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28931-9

  • Online ISBN: 978-3-540-31822-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics